Y. Arjevani and O. Shamir, Communication complexity of distributed convex learning and optimization, 2015.

M. F. Balcan, A. Blum, S. Fine, and Y. Mansour, Distributed Learning, Communication Complexity and Privacy, 2012.

R. Bekkerman, M. Bilenko, and J. Langford, Scaling Up Machine Learning: Parallel and Distributed Approaches, 2011.
DOI : 10.1017/cbo9781139042918.002

A. Bellet, Y. Liang, A. B. Garakani, M. F. Balcan, and F. Sha, A Distributed FrankWolfe Algorithm for Communication-Efficient Sparse Learning, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01430851

P. Bertail and J. Tressou, Incomplete generalized U -statistics for food risk assessment, Biometrics, vol.62, issue.1, pp.66-74, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01068794

G. Blom, Some properties of incomplete U -statistics, Biometrika, vol.63, issue.3, pp.573-580, 1976.

L. Bottou and O. Bousquet, The Tradeoffs of Large Scale Learning, 2007.

S. P. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Foundations and Trends in Machine Learning, vol.3, issue.1, pp.1-122, 2011.

S. Bubeck, Convex Optimization: Algorithms and Complexity, Foundations and Trends in Machine Learning, vol.8, issue.3-4, pp.231-357, 2015.

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi et al., Apache Flink TM : Stream and Batch Processing in a Single Engine, IEEE Data Engineering Bulletin, vol.38, issue.4, pp.28-38, 2015.

S. Clémençon, A statistical view of clustering performance through the theory of U-processes, Journal of Multivariate Analysis, vol.124, pp.42-56, 2014.

S. Clémençon, A. Bellet, and I. Colin, Scaling-up Empirical Risk Minimization: Optimization of Incomplete U-statistics, Journal of Machine Learning Research, vol.13, pp.165-202, 2016.

S. Clémençon, G. Lugosi, and N. Vayatis, Ranking and empirical risk minimization of U -statistics, The Annals of Statistics, vol.36, issue.2, pp.844-874, 2008.

S. Clémençon and S. Robbiano, Building confidence regions for the ROC surface, Pattern Recognition Letters, vol.46, pp.67-74, 2014.

I. Daumé, H. Phillips, J. M. Saha, A. Venkatasubramanian, and S. , Protocols for Learning Classifiers on Distributed Data, 2012.

J. Dean and S. Ghemawat, Mapreduce: simplified data processing on large clusters, Communications of the ACM, vol.51, issue.1, pp.107-113, 2008.

W. Hoeffding, A class of statistics with asymptotically normal distribution, Annals of Mathematics and Statistics, vol.19, pp.293-325, 1948.

M. Jordan, On statistics, computation and scalability, Bernoulli, vol.19, issue.4, pp.1378-1390, 2013.
DOI : 10.3150/12-bejsp17

URL : https://doi.org/10.3150/12-bejsp17

A. Lee, U -statistics: Theory and practice, 1990.

G. Papa, A. Bellet, and S. Clémençon, SGD Algorithms based on Incomplete Ustatistics: Large-Scale Minimization of Empirical Risk, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01214667

V. De-la-pena and E. Giné, Decoupling: from Dependence to Independence, 1999.

V. Smith, S. Forte, C. Ma, M. Takác, M. I. Jordan et al., CoCoA: A General Framework for Communication-Efficient Distributed Optimization, Journal of Machine Learning Research, vol.18, issue.230, pp.1-49, 2018.

. Van-der and A. Vaart, Asymptotic Statistics, 2000.

R. Vogel, A. Bellet, and S. Clémençon, A Probabilistic Theory of Supervised Similarity Learning for Pointwise ROC Curve Optimization, p.ICML, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01922988

E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei et al., Petuum: A New Platform for Distributed Machine Learning on Big Data, IEEE Transactions on Big Data, vol.1, issue.2, pp.49-67, 2015.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, Spark : Cluster Computing with Working Sets, 2012.