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Abstract—In recent wireless communication standards (4G,
5G), the growing need for dynamic adjustments of transmission
parameters (e.g., modulation, bandwidth, channel coding rate)
makes traditional static scheduling approaches less and less
efficient. The reason being that precomputed fixed mapping and
scheduling prevent the system from dynamically adapting to
changes of the operating conditions (e.g. wireless channel quality,
available bandwidth).

In this paper, we present Odyn, a hybrid approach for the
scheduling and memory management of periodic dataflow ap-
plications on parallel, heterogeneous, Non-Uniform Memory Ar-
chitecture (NUMA) platforms. In Odyn, the ordering of tasks and
memory allocation are distributed and computed simultaneously
at run-time for each Processing Element. Odyn also proposes a
mechanism to prevent deadlocks caused by attempts to allocate
buffers in size-limited memories. This technique, based on the
static computation of exclusion relations among buffers in a target
application, removes the need for backtracking that is typical of
dynamic scheduling algorithms.

We demonstrate the effectiveness of Odyn on a testbench that
simulates the interactions of randomly generated concurrent ap-
plications. We also demonstrate its deadlock prevention technique
on a selection of use cases.

Index Terms—Dynamic scheduling, Embbeded systems, Dead-
lock prevention

I. INTRODUCTION

Real-time dataflow applications with high processing power
requirements are at the heart of many fields, from the Digital
Signal Processing (DSP) in wireless communications to im-
ages or video analysis in autonomous driving. For performance
reasons these applications are frequently deployed on het-
erogeneous platforms embedding General Purpose Processors
(GPP), DSP processors, Graphics Processing Units (GPU),
dedicated hardware accelerators, etc. To accommodate the
very large memory bandwidth and short memory latency
requirements of these applications, these platforms frequently
adopt a Non-Uniform Memory Architecture (NUMA) where
the memory resource is distributed over multiple, size-limited,
physical memories. The drawback of NUMA is usually that the
computing nodes can access only a limited sub-set of physical
memories. Here, the input (output) data of rasks' must be
stored before (after) tasks start executing.

In this paper we use task as a synonym of data processing operation, not
in the sense of operating system task.

In this paper the platforms that we target are typical of
the ones used for wireless communications. They are hetero-
geneous and NUMA. GPPs are used for the control tasks
while dedicated execution units (e.g., DSP, GPU, FPGA,
hardware accelerators) are responsible for the DSP tasks. All
these computing nodes are interconnected by communication
resources (e.g., hierarchical buses, crossbars). Each execution
unit is composed of a Processing Element (PE) and a local
(scratchpad) memory. A PE can be general purpose (DSP) or
very specialized (hardware accelerator). All data processed by
the execution node are stored in the local memory. These local
memories are not shared among PEs to prevent contention and
guarantee deterministic access times during processing. Large
shared memories, such as the ones used by the control GPPs,
are not directly accessed by PEs. They are used as general pur-
pose storage facilities and data blocks are transferred between
shared memories and local private memories when needed.

In this context the search of the (near) optimal mapping
and scheduling? is a well-known challenging problem. The
mapping consists in allocating tasks to computation nodes,
data buffers to physical memories and data transfers to physical
links. It must fulfill all requirements imposed by the applica-
tions and the platform (e.g., compatibility between the nature
of tasks and computing nodes, between computing nodes and
physical memories). The scheduling consists in ordering the
execution of all tasks and data transfers such that the data
dependencies of the applications are satisfied, the real-time
constraints are met and deadlocks are avoided.

Traditionally this mapping and scheduling challenge has
been tackled by static (offline) analyzers [1]. The main advan-
tages of this approach are the high processing power and time
that can be spent offline to explore solutions, the possibility to
prove the functional and real-time correctness of the selected
solution, and the low computation load at run-time for the
control tasks: as the mapping and the scheduling are computed
offline, they do not have to be recomputed online but “simply”
to be applied. The main drawback is the lack of flexibility at
run-time: with a precomputed fixed mapping and scheduling
it is difficult to adapt the running system to changes of

2Depending on the specific case, optimality can be defined in terms of
power consumption, resources usage, probability of missing real-time dead-
lines, etc.



the operating conditions (e.g. wireless channel quality, scene
illumination).

However, the need for dynamic adjustments of dataflow
applications recently became more and more important. In-
deed, recent wireless communication standard such as 4G/5G
constantly adjust the main transmission parameters (e.g., mod-
ulation, bandwidth, channel coding rate, allocation of radio
resources to users) according to the environment state. As a
consequence the processing power of tasks, their throughput,
latency, and sometimes even the algorithm they implement,
change during operation, potentially at a rate of the order of
tens or hundreds of times per second. Moreover, the advent
of new paradigms, like Software Defined Radio [2] (SDR),
advocate for the sharing of the same execution platform
between several more or less independent applications (e.g.,
4G, 5G, WiFi, spectrum sensing). The same trends can be
observed in other fields. Situations where a varying set of
varying applications concurrently run on the same platform
are becoming more and more frequent.

This paper presents Odyn3, a new approach to the mapping
and scheduling problem of time-varying real-time dataflow
applications on parallel, heterogeneous, NUMA platforms. Part
of the scheduling and mapping decisions are taken online,
allowing the set of running tasks and their characteristics to
change over time. It includes a deadlock avoidance strategy
to guarantee the functional correctness. It mixes static and
dynamic analysis in order to reduce the online computing
power dedicated to the control tasks. Section II is an overview
of previous work with similar goals, Section IIl presents
the proposed approach, Section IV gives some experimental
results, Section V concludes the paper and discusses several
directions for improvement.

II. RELATED WORK

Scheduling problems have been widely studied over the
years. A scheduling problem is usually composed of two
parts: the mapping (or assignment) of tasks to PEs, and the
execution ordering of tasks. These two aspects can be solved
together or separately, and offline or online. Three categories
of approaches exist: static, dynamic, and hybrid.

In static scheduling techniques such as [1], [3]-[5], both
the execution order and the assignment of tasks to PEs are
computed offline. These methods offer less flexibility and are
often used for critical applications, e.g., avionics, where the
scheduling correctness must be formally guaranteed.

Dynamic approaches such as those in Tomahawk [6],
XKaapi [7], Spider [8] and StarPU [9], compute the mapping
of tasks and their execution order online. These strategies
are very flexible and reactive, particularly for homogeneous
platforms where all units are capable of executing the same
set of general-purpose operations. Yet, in the platforms we
target, most PEs are highly specialized and only few PEs
can execute a given class of operations (e.g., FFT, channel

3The name is a reference to the Odin god, and comes from French
Ordonanceur dynamique (dynamic scheduler)

decoding or demodulation). In this case, it is our belief that
the complexity overhead caused by the dynamic allocation of
tasks to execution units (transfer of information among units,
introduction of additional communication delays, decision-
making process to select a mapping), is not justified.

Hybrid approaches offer a good balance in terms of flexibility
and performance as they statically assign tasks to PEs but take
scheduling and memory management decisions dynamically.
Using a static mapping removes PEs from the burden of
navigating the system’s design space when ordering computa-
tions at run-time. Moreover, effective scheduling and memory
management decisions can be distributed among PEs and taken
at run-time.

PRUNE [10] is an example of hybrid approach that can be
used to design dataflow applications that are analyzable and
flexible. It uses an extension of the Synchronous Data-Flow
(SDF) formalism where actors are allowed to dynamically
vary their production/consumption rates. This MoC is used
for compile-time analyses of deadlock freedom and memory
usage. PRUNE offers the possibility to use a static or a
dynamic assignment. PRUNE leaves the scheduling to the
underlying OS (e.g GNU/Linux) since tasks are instantiated
as threads using the pthreads library. PRUNE targets general
purpose computer systems like personal computers while Odyn
targets heterogeneous systems with hardware accelerators.
Singh et al. [11] propose a hybrid approach suitable for
platforms with many tiles (sets of processor and memory
resource). A static scheduling is computed for each tile based
on Synchronous Data Flow graphs annotated with mapping
information. The scheduling space of these graphs is explored
to find the ordering with the highest throughput. At runtime,
a mapping and its best-throughput scheduling are selected
depending on the number of tiles available. In [11] the homo-
geneity of a target platform allows for dynamically adjusting
mappings onto tiles that offer equal processing capabilities
while we target heterogeneous architectures where PEs offer
different processing capabilities.

Yang et al. [12] proposed a hybrid scheduling approach to min-
imize energy consumption while respecting time constraints.
In their approach, a design time scheduler statically computes
a set of Pareto-optimal schedulings for a set of applications.
It then passes the characteristics of these Pareto curves to a
runtime scheduler which uses them to select the best ordering
so that the combined energy consumption of the entire system
is optimal.

Similarly to Yang et al.’s approach, HYSTERY [13] statically
computes a set of Pareto-optimal mappings and schedulings for
a set of applications. Each scheduling is associated to a thresh-
old temperature and is selected at runtime for each running
application. During execution, schedulings are adapted as a
consequence of frequency and voltage scaling if a component’s
temperature increases above its scheduling’s threshold.

In contrast to Yang et al. work [12] and to HYSTERY [13],
our scheduling decisions are entirely taken at runtime. Only
the mapping of tasks to PEs and the deadlock prevention
mechanism are computed statically.



To the best of our knowledge, the work of Calandrino et
al. [14] is the closest to our contributions: it also proposes
a hybrid real-time scheduling approach based on Earliest
Deadline First (EDF), without precomputing a set of static
schedulings that can be selected at runtime. However, tasks
are assigned statically to clusters of general-purpose CPUs and
GPUs whereas we assign and order tasks to more heteroge-
neous cores that can execute a specialized set of operations.
Furthermore, their scheduling is preemptive and allows task
migrations under certain conditions. To cover a larger number
of platforms, Odyn does not currently support tasks preemp-
tion. This choice is justified by the fact that not all hardware
accelerators efficiently support preemption.

Finally, Table I summarizes how the related work discussed in
this section supports the characteristics that are relevant for the
dynamic scheduling of data-flow applications. Entries marked
with undef. (undefined) refer to characteristics for which
support by a specific approach/tool could not be assessed
because of lack of information in documents that are publicly
available.

Last but not least, the risk of deadlock is a very common
issue with scheduling algorithms. A deadlock is a situation
where each task is waiting for a resource that another task
possesses such that no task is able to continue its execu-
tion. Deadlock prevention techniques guarantee that deadlocks
cannot occur under any circumstances. These methods can
be overly pessimistic but remove the need to have deadlock
monitoring at runtime. While common approaches to deadlock
prevention are based on the use of Petri Nets [15], we present
a novel approach based on the static computation of exclusion
relations among memory buffers of an SDF graph. This
approch guarantees the absence of deadlock without requiring
data eviction at run-time.

III. SCHEDULING ALGORITHM

In Odyn, tasks mapping to PE and tasks scheduling are
separated. Indeed, Odyn assumes that tasks have already been
annotated with mapping information e.g. at Design Space
Exploration. Odyn also assumes that tasks have a Worst Case
Execution Time (WCET).

A. Input

Different types of information serve as input to Odyn:
(i) one or more application graphs annotated with real-time
constraints (tasks’ deadlines) and (ii) mapping information
that assigns tasks to PEs, buffers to PEs’ memories, specifies
the size of each PE’s memory, associates estimates of the
tasks” Worst-Case Execution Time (WCET) and estimates for
the throughput of communication links in the platform (to
compute the duration of data transfers).

1) Application model: In Odyn, a workload is defined as a
set S of independent periodic applications. Each application
s € S is represented as a Synchronous Data-Flow (SDF)
graph. In an SDF graph G = < A,E >, the set of nodes
A (called actors) represents tasks interconnected by a set of

Src A B C Sink
AHSDF transformation
v
1 B1 1
Src E > A ! B2 ! C ! » Sink
B3

Fig. 1. Example of an application SDF graph and its corresponding AHSDF
graph.

edges E that are First-In First-Out (FIFO) buffers. In the SDF
MoC, an actor starts execution (firing) when its incoming
FIFO(s) contains enough tokens, it cannot be preempted and
produces tokens onto its outgoing FIFO(s). The number of
tokens consumed/produced by each firing is a fixed scalar
that is annotated to the graph’s edges. As actors have no
state in SDF graphs, if enough tokens are available, an actor
can start several executions in parallel. For this reason, SDF
graphs naturally express the parallelism of signal-processing
applications and can be statically analyzed for several types
of optimizations (e.g., memory allocation, scheduling). An
example SDF graph can be seen at the top of Fig. III-Al.

In Odyn, each application SDF graph s € S is first transformed,
as described in [16], into a directed Acyclic Homogeneous
SDF graph (AHSDF graph). In a AHSDF graph H = < T,D >,
tasks in T are associated to identical (homogeneous) produc-
tion and consumption rates on FIFOs in D. The result of
this transformation on the example SDF graph can be seen
at bottom of Fig. III-Al. This transformation is necessary
to expose data parallelism and memory allocation options
(Homogeneous SDF) as well as to isolate one iteration of
the algorithm captured by the original SDF graph (Acyclic
Homogeneous SDF).

In Odyn, dynamic scheduling and memory management de-
cisions are taken independently for each Processing Element.
For each PE Odyn considers a cluster of partitioned AHSDF
graphs. Given the set P of Processing Elements in the target
platform, for each p € P, the partitioned AHSDF graph of an
application s, is the graph H, = < T,, D, > where the nodes
T, C T are the tasks t € T mapped to p. “Artificial” source and
sink tasks are added to guarantee the semantical correctness
of the partitioned graph H, with respect to the semantics of
the SDF MoC. The set of edges D, € D is composed of the
edges d € D for which both the producer task f?.,,s € T and
consumer task #,,,q € T are mapped to p as well as the edges
that connect tasks in 7, with the “artificial” source and sink
tasks. The cluster of partitioned AHSDF graph is computed
as the disjoint union of the partitioned AHSDF graphs for all
applications s € S.



Calandri Singh Y:
Odyn?  StarPUP  TomahawkP XKaapi® SynDExS PRUNEH ~—*oncrie Smet - Tae - pygrpryH
et al. et al. et al.
Deadlock analysis yes yes no! no yes yes no no no no
Deadlock prevention yes yes no! no yes no no no no no
NUMA support yes yes yes yes yes undef. no yes yes yes
.. CPU/DSP/ CPU/DSP/ CPU/DSP/
Heterogeneity FPGA CPU/GPU FPGA/GPU ™  FPGA/GPU CPU/GPU no no no CPU/GPU
Dynamic ordering yes yes yes yes no yes yes no no no
Dynamic assignment no yes yes yes no yes yes no no no
Targeted system real-time HPC real-time =~ HPC  real-time general real-time real-time low—pqwer, low-power
purpose real-time

'To ensure the absence of deadlocks a set of constraints on timing properties and data consumption of tasks must be respected.

TABLE I
A COMPARISON BETWEEN RELATED APPROACHES (S: STATIC, H: HYBRID, D: DYNAMIC)

2) Platform model and mapping information: A generic
logical architecture of the platforms that Odyn targets can be
seen in Fig. III-A3. These platforms are composed of a set
of n Processing Elements (PEs) and their local memory units
connected together by a set of buses and interconnects. Direct
Memory Access (DMA) engines can be used to transfert data
among PEs’ local memories.

3) Hpypothesis for the scheduling analysis: The scheduling
analysis that is performed by Odyn is based on the following
list of hypothesis.

« Application:

— H;: All applications have the same period

« Architecture:

— H,: There is exactly one memory node per PE

o Mapping:

— Hj: Buffers are dynamically allocated in the memory
assigned to their consumer or producer PE and are
not allowed to migrate at run-time

— Hj: Task migration across PEs is not allowed

— Hs: Estimates for the duration of data transfers can
be computed only based on the throughput of the
communication links in the target platform and the
transfers’ sizes

o Scheduling:

— Hg: Each PE can execute only one task at a time,
without preemption, until the task’s completion

— Hj: For each application, the overlapping of schedul-
ings for different periods is not allowed (i.e., all tasks
of period n are executed before any task of period
n + 1 can be executed)

— Hg: Data transfers start as soon as they are requested
by a consumer task

— Hy: There is no risk of deadlock or livelock on the
interconnect

— Hjp: There is no data loss during transfer

— Hj;: Buffers are entirely transferred from a producer
PE to a consumer PE: there is no partial transfer
of buffers. In other words, data-transfers cannot be
interrupted and resumed at a later time instant.

| |
PE1 PEn |
! |
! |
|
DMA H Bus 1 H Bridge 1 Bus n L{ pma |
|
|
| |
Memory 1 Memory n I
|

Execution unit

Fig. 2. Example logical architecture of a target platform.
B. Local dynamic scheduling algorithm

The task-ordering decisions are distributed. Each PE is man-
aged by a separate dedicated scheduler that takes two inputs: (i)
a flow of control events generated by the schedulers of all PEs
in the platform, (ii) the cluster of partitioned AHSDF graphs.
The algorithm of a scheduler is given in Algorithm 1. An event
signals the timestamps of allocation and data availability of
a specific buffer. Since each Processing Element can execute
only one task at a time, without preemption (Hg), the well-
known Earliest Deadline First (EDF) algorithm cannot be used.
Instead, we use the Earliest Due-Date first (EDD) algorithm
that is similar in principle to EDF, but is compatible with our
hypotheses on targeted systems. If multiple tasks share the
smallest due-date, one of them is selected randomly. The due-
date metric is an upper-bound on the completion time of a task,
which if missed will cause a deadline miss for said task or at
least one of its descendants. We use the method introduced by
Adyanthaya et al. in [17] to compute due-dates. This method
takes into account that multiple successors of a task mapped to
the same PE will be executed sequentially, providing a tighter
bound than the usual as-late-as-possible start time. If no tasks
are ready, a virtual idle task is inserted to force the PE to
wait for the next event to occur. Once a task is selected, its
completion time is estimated using the task’s WCET, and the
lifetimes of the task’s buffers are updated accordingly. This
generates a new event for each task output buffer. These events
are sent to the scheduler of the PE executing the buffer’s
consumer task. For a given buffer, if its producer and consumer



tasks are executed by two different PEs, a communication
occurs to transfer the buffer’s data. The communication time
is estimated using the provided model of communications.

C. Deadlock conditions

Coffman et al. [18] determined four necessary and sufficient
conditions for deadlocks to occur:

o Mutual exclusion: a resource must be non-shareable.

o Hold and wait: a process is holding at least one resource
while requesting additional resources.

o No preemption: a resource ownership cannot be sus-
pended or canceled until the end of the process holding
the resource.

o Circular wait: there is a set of tasks {¢1,%,...,t,} such
that ¢, is waiting for a resource held by 1, #, is waiting
a resource held by f3, and so on until 7, waiting for a
resource held by 1.

In our architecture, we have three kinds of resources: process-
ing elements, communication units, and memory units. Ports
used to access memory units are considered as communication
resources, and memory resources only refer to the memory
space. The state of the deadlock conditions for the different
types of resource are presented in Table II, and explained
below.

Mutual exclusion does not occur in the case of (purely the-
oretical) infinite memory because new buffers can always be
allocated in new memory space.

The hold and wait situation can arise in memory units as some
input buffers can be already allocated while others are yet to
be. It cannot occur in processing and communication nodes
as we enforced the constraint that all input and output buffers
must be already allocated in order to launch the execution of
a task or a communication.

There is no preemption in processing nodes in the targeted
architecture. There is also no preemption on memory as we
decided that allocated buffers can only be freed once their
consuming tasks have been executed.

There cannot be circular waits for processing nodes as each
task is executed on one and only one node, and a task requests
its processing node only once all other needed resources (e.g.,
in/out buffers) have already been allocated.

This means that only memory units with limited capacity
can produce deadlocks. In the next subsection, we propose a
technique to prevent this type of deadlocks based on Memory
Exclusion Graphs.

D. Deadlock prevention using a static analysis of Memory
Exclusion Graphs

Desnos et al. introduced Memory Exclusion Graphs (MEGs)
in [19]: a MEG is an undirected weighted graph where ver-
tices represent indivisible memory objects that correspond to
communication buffers in an SDF graph, the working memory
of SDF actors and feedback FIFOs that store initial tokens in
an SDF graph. Edges in a MEG represent exclusion relations,
i.e., the impossibility to share physical memory. In Odyn, a
MEG differs from the definition in [19] as it is derived from

W « T; current_time < now;

while W # 0 do

input

I: set of inbound events;

H = (T, D): AHSDF dependency graph;
T: set of tasks;
D: set of dependencies;

define

R: tasks ready to be fired;
W: tasks waiting for input buffers;
P;: tasks/events producing input buffers of task ¢;
Start,: start time of task ¢;
End;: end time of task ¢;
Allocg p: allocation time of task-a-to-b buffers;
Free, p: deallocation time of task-a-to-b buffers;
send_event(node, event,time): inform scheduler of
node that event will occur at time;
receive_events(): get new event notifications from
other schedulers;

// init
// while tasks waiting
for event € I do
if time(event) < current_time then

I « I\ event,

for succ € successors(event) do

‘ Psucc — Psucc \ event,

end
end
end
for r ¢ W do
if P, =0 then R« RUZ;

end

W «— W\R,

if R # 0 then

// Select task to schedule

t « task with smallest due date in R;

Start; « current_time;

End, « current_time + wcet(t);

// Update buffers lifetime

for succ € successors(H,t) do

Alloct syce < current_time;

Psuce < Psuce \t;

if succ is an outgoing communication then
End.om = End; + wcet(succ);
send_event(dest(succ), succ, Endcom);

end

end
for pred € predecessors(H,t) do
‘ Freeprea,s < Endy;
end
schedule ¢ at Strart,;
current_time < End,;
else
// Idle until next incoming event
current_time «— min([l);

end
// Get new incoming event
I « I Ureceive_events();

end

Algorithm 1: Scheduler of an execution node



Condition  Processin, Commu-  Memory  Memory

€ nication (infinite)  (limited)
Mutual exclusion true true false true
Hold and wait false false true true
No preemption  true true true true
Circular wait  false true false true
Deadlock risk  no no no yes

TABLE II

DEADLOCK RISK DEPENDING ON RESOURCE

KRR
ERLERE A

(a) Example cluster of partitioned AHSDF (b)
graphs MEG

Corresponding

Fig. 3. Example applications, potentially subject to deadlock

a PE-specific cluster of partitioned AHSDF graphs. Formally,
in Odyn, a MEG is defined as a weighted undirected graph
M = < B,R > where the vertices B are the buffers in D), that
capture data dependencies between tasks that run on a given
PE, T,,. Similarly to [19], vertices in B are weighted with the
sizes of buffers D, and edges R represent memory exclusion
relations. As in [19], in Odyn, we consider that the memory
allocated to buffers D), is reserved from the execution start of
the producer actor until the completion of the consumer actor
in T),.

As described in [19], AHSDF graphs can be updated with
scheduling constraints. These constraints have the effect of
removing exclusion relations (edges) in the corresponding
MEG.

As explained above, a deadlock may occur if a circular wait
happens due to a memory being unable to host a buffer. This
situation can be detected by inspecting cliques in a MEG M. A
clique is defined as a subset of an undirected graph’s vertices
such that every two distinct vertices in the clique are adjacent.
The weight of a MEG’s clique defines the maximum amount
of memory that must be allocated to store the buffers that
compose the clique. This is regardless of the scheduling policy
for the tasks that produce/consume the buffers represented by a
MEG’s nodes. Therefore, if the weight of a clique exceeds the
PE’s memory capacity, a deadlock may occur. We call these
cliques oversized cliques. We define a minimal oversized clique

(a) Cluster of partitioned AHSDF graphs,
updated with a scheduling constraint

(b) Updated MEG

Fig. 4. Updated applications, deadlock-free

as an oversized clique such that removing any buffer from it
would lead to a clique that is not oversized.

In case of unscheduled MEGs, the presence of an oversized
clique is a necessary (but not sufficient) condition for a
deadlock. For scheduled MEGs, the presence of an oversized
clique becomes a necessary and sufficient condition. For
example, let’s consider the scenario where two applications
can run simultaneously, as shown in Fig. 3a that represents
the corresponding cluster of partitioned AHSDF graphs. These
applications run on a platform with one processing node and
one memory unit of capacity 1000 bytes. Executing these
applications will deadlock if producer tasks A and X are
scheduled to run before both consumer tasks B and Y. This
is because neither output buffer BC nor YZ can be allocated.
This is visible in the corresponding MEG (Fig. 3b) as the
clique {AB,BC,XY} is of size 1100 bytes, thus larger than
the available memory capacity.

input
M: Memory Exclusion Graph to analyze;
mem_size: size of memory unit;

output
OC minimal oversized clique of M (or empty set if

none found);

OC « 0; // initialization
max_cliques «— find_maximal_cliques(M);
for clique € max_cliques do
if size(clique) > mem_size then
// reduce to minimal-oversized
for buf fer € clique do
if size(clique \ buf fer) > mem_size then
‘ clique « clique \ buf fer,
end
end
OC « clique;
break;

end
end
Algorithm 2: Find minimal-oversized clique in MEG

Our anti-deadlock mechanism is based on finding minimal
oversized cliques in an unscheduled MEG, as described in
Algorithm 2. To find a minimal oversized clique we first
look for a maximal clique* of the MEG that is oversized,
and then remove vertices from it until we get a minimal
oversized clique. If there is an oversized clique in the MEG,
a scheduling constraint is added to an application’s AHSDF
graph, from the consumer task of a buffer in the clique to the
producer task of another buffer of the clique. The MEG is
then updated. We look for minimal oversized cliques, because
removing a minimal oversized clique also removes any larger
clique containing all buffers of that minimal oversized clique.
The additional scheduling constraint corresponds to the dashed

4A maximal clique is a clique to which no vertices can be added without
resulting in a graph that is not a clique.



link in Fig. 4a, and the updated MEG is shown in Fig. 4b.
Adding scheduling constraints prevents from having all the
producer tasks of buffers which are part of the clique from
being executed while none of the corresponding consumer
has. This avoids having to fit all the oversized clique’s buffers
in memory at the same time, thus preventing deadlocks. In
our example, the deadlock prevention is visible in the updated
MEG in Fig. 4b as the oversized clique {AB, BC,XY} is no
longer present. The remaining maximal cliques {AB, BC} and
{BC,XY,YZ} are not oversized, meaning that there is no
oversized clique left in the MEG.

Since finding the cliques in a MEG is computationally ex-
pensive (the clique decision problem is NP-complete [20]),
we propose to perform anti-deadlock analyses statically. This
analysis is made on the worst-case scenario, where we consider
that all applications run simultaneously.

IV. EXPERIMENTAL RESULTS

We evaluated Odyn on the scheduling of a workload of
ten application graphs. The graphs were generated using
SDF? [21] and have ten tasks (nodes) each. The buffer sizes
were generated to be in the range [32,8192] bytes, with
an average size of 2048 bytes. Our evaluation platform is
an instance of the one in Fig. III-A3 with three PEs and
three memory nodes, each PE being statically associated to
a different memory node.

We remind to the reader that we consider a workload of
applications with identical periods (hypothesis H;). Scheduling
decisions are locally taken by each PE. To validate these deci-
sions, we run a simulation that ensures the overall correctness
of the scheduling of all applications, i.e. dependencies are
respected and memory can be safely allocated when requested.

A. Anti-deadlock analysis

The number of anti-deadlock scheduling constraints to add
to an application’s AHSDF graph H = < T,D > depends
on the number of oversized cliques in the application’s MEG.
The number of oversized cliques depends itself on the number
and size of a MEG’s buffers, and on a target PE’s memory
capacity. Fig. IV-A shows the impact of the number of parallel
applications on the number of scheduling constraints (links in
D) that are added to prevent deadlocks in H. In this con-
figuration, no anti-deadlock links are required when running
4 applications or fewer. As expected, the number of links
increases exponentially with the number of applications that
run simultaneously, whereas the number of nodes per MEG
grows linearly. The reason is that the number of cliques in a
MEG grows exponentially with the number of nodes and the
parallelism induced by the number of applications.

Fig. IV-A shows the relation between the PEs’ memory
size and the number of anti-deadlock links in a partitioned
AHSDF graph. In our target architecture, the size of memory
nodes is fixed by the platform’s hardware design and cannot
be changed at run-time. Using very large memories can
ensure that no deadlock will occur, but at a very high cost
since memory nodes will be greatly oversized in comparison
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Fig. 5. In red (continuous line), it is shown the number of links that are added
to prevent deadlocks as a function of the number of applications (memory
size 64 KB per PE). Blue (dashed) curves show the size of MEGs for three
memories, as a function of the number of applications.
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Fig. 6. Number of links added to prevent deadlocks, as a function of the
memory size per PE (10 applications)

to the average need. On the contrary, very small memory size
will greatly reduce the overall performance of the system. The
lesser the size of memories, the greater the number of links
added to prevent deadlocks, and each additional anti-deadlock
scheduling constraint can have an effect on the performance.

B. Evaluation of anti-deadlock impact on performance

We evaluated the performance impact of the anti-deadlock
mechanism by running simulations on multiple sets of ten
applications each. Using SDF® we generated 100 random
AHSDF graphs, each composed of 10 tasks. We then selected
randomly 2000 sets of 10 AHSDF graphs. For each of these
sets, we ran two simulations, with a memory size of 64KiB
per PE. For the first simulation, the deadlock prevention
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Fig. 7. Histogram of the impact of the deadlock prevention mechanism on
the maximal makespan.

mechanism was not enabled. This allowed us to discover
the number of applications sets that contained deadlocks; it
amounted to 343 out of 2000 sets of applications. In the
second simulation, the deadlock prevention mechanism was
enabled. As expected, no deadlocks have been encountered,
illustrating that our mechanism effectively prevents deadlocks.
For the remaining 1657 out of 2000 application sets that
did not present deadlocks® we evaluated the impact of our
anti-deadlock mechanism on the system’s performance. More
precisely, we computed the difference in the makespan (i.e.,
the total length of a schedule) observed on these sets in the two
simulations. The distribution of the impact on performance can
be seen in Fig. IV-B. It resembles a biased Gaussian distribu-
tion. The average difference in performance is equal to 6.15%,
the median difference is equal to 5.00%, and differences range
from —20.30% (i.e. a reduction of the makespan by 20.30%)
in the best case, to +43.25% in the worst case.

V. ConNcLusioNs AND FUTURE WORK

In this paper we introduced Odyn, a hybrid approach for
scheduling periodic dataflow applications on parallel, hetero-
geneous, Non-Uniform Memory Architecture platforms. We
also developed a deadlock prevention mechanism based on the
static computation of cliques in Memory Exclusion Graphs.
The additional cost of these computations is mitigated in
Computer Aided Design tools in the Design Space Exploration
while computing a mapping for the input applications.

In terms of future directions, we believe that Odyn’s anti-
deadlock analysis could be used offline at design time to
determine a compromise between the size of memory regions
that are assigned to PEs, the set of concurrent applications that
a platform can efficiently support and the desired performance.
An additional future work is to automatically compute the

SAt least during the simulation without deadlock prevention that we ran.

optimal memory regions that must be assigned to PEs for a
given performance requirement.
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