G. Kroemer, Mitochondria in cancer, Oncogene, vol.25, pp.4630-4632, 2006.

V. Gogvadze, S. Orrenius, and Z. B. , Mitochondria in cancer cells: what is so special about them?, Trends Cell Biol, vol.18, issue.4, pp.165-73, 2008.

D. C. Wallace, Mitochondria and cancer, Nature Reviews Cancer, vol.12, pp.685-698, 2012.

S. Fulda, L. Galluzzi, and G. Kroemer, Targeting mitochondria for cancer therapy, Nature Reviews Drug Discovery, vol.9, pp.447-464, 2010.

M. Wasilewski and L. Scorrano, The changing shape of mitochondrial apoptosis, Trends Endocrinol Metab, vol.20, issue.6, pp.87-94, 2009.

G. Melino, M. Karbowski, and R. J. Youle, Dynamics of mitochondrial morphology in healthy cells and during apoptosis, Cell Death and Differentiation, vol.10, pp.870-880, 2003.

S. Campello and L. Scorrano, Mitochondrial shape changes: orchestrating cell pathophysiology, EMBO Rep, vol.11, issue.9, pp.678-84, 2010.

M. E. Plissiti, C. Nikou, and A. Charchanti, Combining shape, texture and intensity features for cell nuclei extraction in Pap smear images, Pattern Recognition Letters, vol.32, issue.6, pp.838-853, 2011.

S. Sitansu-kumar-das, D. P. Saha, and . Mukherjee, Segmentation of multiple objects evolving conditional random field based topology adaptive active membrane, Signal Processing, vol.92, pp.2341-2355, 2012.

B. Andres, U. Koethe, T. Kroeger, M. Helmstaedter, K. L. Briggman et al., 3D segmentation of SBF-SEM images of neuropil by a graphical model over supervoxel boundaries, Medical Image Analysis, vol.16, pp.796-805, 2012.

A. Lucchi, K. Smith, R. Achanta, G. Knott, and P. Fua, Supervoxel-Based Segmentation of Mitochondria in EM Image Stacks With Learned Shape Features, IEEE Transactions on, vol.31, issue.2, pp.474-486, 2012.

R. Narasimha, H. Ouyang, A. Gray, S. W. Mclaughlin, and S. Subramaniam, Automatic joint classification and segmentation of whole cell 3D images, Pattern Recognition, vol.42, pp.1067-1079, 2009.

S. N. Vitaladevuni, N. J. Sofroniew, Y. Mishchenko, A. Genkin, D. B. Chklovskii et al., Automatic mitochondria detection in electron micrographs, 2008.

D. J. Stokes, F. Morrissey, and B. H. Lich, A new approach to studying biological and soft materials using focused ion beam scanning electron microscopy (FIB SEM), Journal of Physics: Conference Series, vol.26, pp.50-53, 2006.

E. S. Clark, A. S. Whigham, W. G. Yarbrough, and A. M. Weaver, Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia, Cancer Res, vol.67, pp.4227-4235, 2007.

D. Hoshino, Establishment and validation of computational model for MT1-MMP ependent ECM degradation and intervention strategies, PLoS Comput Biol, vol.8, 2012.

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, vol.8, issue.6, pp.679-698, 1986.

N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. Sys., Man., Cyber, vol.9, issue.1, pp.62-66, 1979.

S. E. Grigorescu, Comparison of texture features based on Gabor filters, IEEE Transactions on, vol.11, pp.1160-1167, 2002.

J. K. Kamarainen, Invariance properties of Gabor filter-based features-overview and applications, IEEE Transactions on, vol.15, pp.1088-1099, 2006.

C. Chen and D. C. Chen, Multi-resolutional gabor filter in texture analysis, Pattern Recognition Letters, vol.17, pp.1069-1076, 1996.

F. Bianconi and A. Fernndez, Evaluation of the effects of Gabor filter parameters on texture classification, Pattern Recognition, vol.40, pp.3325-3335, 2007.

X. Wang, Gabor filters-based feature extraction for character recognition, Pattern Recognition, vol.38, pp.369-379, 2005.

Y. Jonghyon, Online signature verification using temporal shift estimated by the phase of Gabor filter, IEEE Transactions on, vol.53, pp.776-783, 2005.

D. Wu, On the adaptive detection of blood vessels in retinal images, Biomedical Engineering, vol.53, pp.341-343, 2006.

Y. Zhang and X. Jing, Spectral analysis based fingerprint image enhancement algorithm, Image Analysis and Signal Processing (IASP), 2010 International Conference on, pp.656-659, 2010.

S. L. Gonzaga-de-oliveira and J. Teixeira-de-assis, A methodology for identification of fingerprints based on Gabor filter, IEEE (Revista IEEE America Latina), vol.4, pp.1-6, 2006.

T. Chung-chih, Iris Recognition Using Possibilistic Fuzzy Matching on Local Features, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol.42, pp.150-162, 2012.

A. W. Kong, An Analysis of IrisCode, IEEE Transactions on, vol.19, pp.522-532, 2010.

C. Sanchez-avila and R. Sanchez-reillo, Two different approaches for iris recognition using Gabor filters and multiscale zero-crossing representation, Pattern Recognition, vol.38, pp.231-240, 2005.

S. Dinggang, Segmentation of prostate boundaries from ultrasound images using statistical shape model, IEEE Transactions on, vol.22, pp.539-551, 2003.

S. S. Mohamed and M. M. Salama, Prostate Cancer Spectral Multifeature Analysis Using TRUS Images, IEEE Transactions on, vol.27, pp.548-556, 2008.

J. A. Heymann, D. Shi, S. Kim, D. Bliss, J. L. Milne et al., 3D Imaging of mammalian cells with ion-abrasion scanning electron microscopy, Journal of Structural Biology, vol.166, issue.1, pp.1-7, 2009.

G. E. Murphy, K. Narayan, B. C. Lowekamp, L. M. Hartnell, J. A. Heymann et al., Correlative 3D imaging of whole mammalian cells with light and electron microscopy, Journal of Structural Biology, vol.176, issue.3, pp.268-278, 2011.

R. Giuly, M. Martone, and M. Ellisman, Method: automatic segmentation of mitochondria utilizing patch classification, contour pair classification, and automatically seeded level sets, BMC Bioinformatics, vol.13, issue.1, p.29, 2012.

J. C. Platt, Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines, Advances in Kernel Methods -Support Vector Learning, pp.185-208, 1999.

K. Zuiderveld, Contrast Limited Adaptive Histograph Equalization, p.474485, 1994.