B. N. Pasley, S. V. David, N. Mesgarani, A. Flinker, S. A. Shamma et al., Reconstructing speech from human auditory cortex, PLoS biology, vol.10, issue.1, p.1001251, 2012.

N. Mesgarani and E. F. Chang, Selective cortical representation of attended speaker in multi-talker speech perception, Nature, vol.485, issue.7397, p.233, 2012.

J. A. O'sullivan, A. J. Power, N. Mesgarani, S. Rajaram, J. J. Foxe et al., Attentional selection in a cocktail party environment can be decoded from single-trial eeg, Cerebral Cortex, vol.25, issue.7, pp.1697-1706, 2014.

J. A. O'sullivan, R. B. Reilly, and E. C. Lalor, Improved decoding of attentional selection in a cocktail party environment with eeg via automatic selection of relevant independent components, 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.5740-5743, 2015.

M. J. Crosse, G. M. Di-liberto, A. Bednar, and E. C. Lalor, The multivariate temporal response function (mtrf) toolbox: a matlab toolbox for relating neural signals to continuous stimuli, Frontiers in human neuroscience, vol.10, p.604, 2016.

S. A. Fuglsang, T. Dau, and J. Hjortkjaer, Noise-robust cortical tracking of attended speech in real-world acoustic scenes, Neuroimage, vol.156, pp.435-444, 2017.

I. Sturm, M. Treder, D. Miklody, H. Purwins, S. Dähne et al., Extracting the neural representation of tone onsets for separate voices of ensemble music using multivariate eeg analysis, vol.25, p.366, 2015.

I. Sturm, S. Dähne, B. Blankertz, and G. Curio, Multi-variate eeg analysis as a novel tool to examine brain responses to naturalistic music stimuli, PloS one, vol.10, issue.10, p.141281, 2015.

R. S. Schaefer, P. Desain, and J. Farquhar, Shared processing of perception and imagery of music in decomposed eeg, Neuroimage, vol.70, pp.317-326, 2013.

A. Ofner and S. Stober, Shared generative representation of auditory concepts and eeg to reconstruct perceived and imagined music, International Society for Music Information Retrieval Conference (ISMIR), 2018.

F. Cong, A. H. Phan, Q. Zhao, A. K. Nandi, V. Alluri et al., Analysis of ongoing eeg elicited by natural music stimuli using nonnegative tensor factorization, Proc. of the 20th European Signal Processing Conference (EUSIPCO), pp.494-498, 2012.

M. H. Thaut, Rhythm, human temporality, and brain function, pp.171-191, 2005.

L. K. Cirelli, D. Bosnyak, F. C. Manning, C. Spinelli, C. Marie et al., Beat-induced fluctuations in auditory cortical beta-band activity: using eeg to measure age-related changes, Frontiers in psychology, vol.5, p.742, 2014.

S. Stober, T. Prätzlich, and M. Müller, Brain beats: Tempo extraction from eeg data, International Society for Music Information Retrieval Conference, pp.276-282, 2016.

C. J. Plack, D. Barker, and D. A. Hall, Pitch coding and pitch processing in the human brain, Hearing Research, vol.307, pp.53-64, 2014.

A. Caclin, M. Giard, B. K. Smith, and S. Mcadams, Interactive processing of timbre dimensions: A garner interference study, Brain research, vol.1138, pp.159-170, 2007.

A. De-cheveigné, D. D. Wong, G. M. Di-liberto, J. Hjortkjaer, M. Slaney et al., Decoding the auditory brain with canonical component analysis, NeuroImage, vol.172, pp.206-216, 2018.

M. S. Treder, H. Purwins, D. Miklody, I. Sturm, and B. Blankertz, Decoding auditory attention to instruments in polyphonic music using single-trial eeg classification, Journal of neural engineering, vol.11, issue.2, p.26009, 2014.

B. Kaneshiro, D. T. Nguyen, J. P. Dmochowski, A. M. Norcia, and J. Berger, Naturalistic music eeg dataset -hindi (nmed-h), 2016.

S. Losorelli, D. T. Nguyen, J. P. Dmochowski, and B. Kaneshiro, Nmed-t: A tempo-focused dataset of cortical and behavioral responses to naturalistic music, pp.339-346, 2017.

J. Appaji and B. Kaneshiro, Neural tracking of simple and complex rhythms: Pilot study and dataset, 2018.

S. Koelstra, C. Muhl, M. Soleymani, J. Lee, A. Yazdani et al., Deap: A database for emotion analysis; using physiological signals, IEEE Transactions on Affective Computing, vol.3, issue.1, pp.18-31, 2012.

S. Stober, A. Sternin, A. M. Owen, and J. A. Grahn, Towards music imagery information retrieval: Introducing the openmiir dataset of eeg rec.ings from music perception and imagination, International Society for Music Information Retrieval Conference (ISMIR), pp.763-769, 2015.

N. Mesgarani, S. V. David, J. B. Fritz, and S. A. Shamma, Influence of context and behavior on stimulus reconstruction from neural activity in primary auditory cortex, Journal of neurophysiology, 2009.

J. Vanthornhout, L. Decruy, J. Wouters, J. Z. Simon, and T. Francart, Speech intelligibility predicted from neural entrainment of the speech envelope, Journal of the Association for Research in Otolaryngology, pp.1-11, 2018.

D. D. Wong, S. A. Fuglsang, J. Hjortkjaer, E. Ceolini, M. Slaney et al., A comparison of temporal response function estimation methods for auditory attention decoding, p.281345, 2018.

A. Yeh, More accurate tests for the statistical significance of result differences, Proc. of the 18th conference on Computational linguistics, vol.2, pp.947-953, 2000.

E. W. Noreen, Computer-intensive methods for testing hypotheses, 1989.