
HAL Id: hal-02302639
https://telecom-paris.hal.science/hal-02302639

Submitted on 1 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local Decode and Update for Big Data Compression
Shashank Vatedka, Aslan Tchamkerten

To cite this version:
Shashank Vatedka, Aslan Tchamkerten. Local Decode and Update for Big Data Compression. IEEE
Transactions on Information Theory, 2020, �10.1109/TIT.2020.2999909�. �hal-02302639�

https://telecom-paris.hal.science/hal-02302639
https://hal.archives-ouvertes.fr

1

Local Decode and Update
for Big Data Compression

Shashank Vatedka, Member, IEEE, Aslan Tchamkerten, Senior Member, IEEE,

Abstract

This paper investigates data compression that simultaneously allows local decoding and local update. The main result is a
universal compression scheme for memoryless sources with the following features. The rate can be made arbitrarily close to the
entropy of the underlying source, contiguous fragments of the source can be recovered or updated by probing or modifying a
number of codeword bits that is on average linear in the size of the fragment, and the overall encoding and decoding complexity
is quasilinear in the blocklength of the source. In particular, the local decoding or update of a single message symbol can be
performed by probing or modifying a constant number of codeword bits. This latter part improves over previous best known
results for which local decodability or update efficiency grows logarithmically with blocklength.

I. INTRODUCTION

Recent articles [2]–[4] point to the mismatch between the amount of generated data, notably genomic data [5]–[7], and
hardware and software solutions for cloud storage. There is a growing need for space-optimal cloud storage solutions that
allow efficient remote interaction, as frequent remote access and manipulation of a large dataset can generate a large volume
of internet traffic [8]–[10].

Consider for instance compressing and storing DNA sequences in the cloud. If compression is handled via traditional
methods, such as Lempel-Ziv [11], [12], then to retrieve say a particular gene, typically a few tens of thousands of base pairs,
we need to decompress the entire DNA sequence, about three billion base pairs. Similarly, the update of a small fraction of the
DNA sequence requires to update the compressed data entirely. Solutions have been proposed, typically using modifications
of Lempel-Ziv and variants, to address some of these issues (see e.g., [13]–[17] and the references therein).

In this paper we investigate lossless data compression with both local decoding and local update properties. Accordingly,
consider a rate R compression of an i.i.d.„ pX sequence Xn. Let dpsq denote the average (over the randomness in the source
Xn) number of bits of the codeword sequence that need to be probed, possibly adaptively, to decode an arbitrary length s
contiguous substring of Xn. Similarly, let upsq denote the average number of codeword bits that need to be read and written,
possibly adaptively, in order to update an arbitrary length s contiguous substring of Xn. The basic question addressed here
is whether it is possible to design a compression scheme such that the operations of local decoding and local update involve
a number of bits that is proportional to the number of bits to be retrieved or updated. Specifically, is it possible to design a
coding scheme such that, for any R larger than the entropy HppXq,

pdpsq, upsqq “ pOpsq, Opsqq for any 1 ď s ď n ?

As we show in this paper, the answer is positive. Given ε ą 0, we exhibit a compressor, a local decoder and a local updater
with the following properties:
‚ The compressor achieves rate R “ HppXq ` ε universally.
‚ The local decoder achieves constant decodability

dp1q “ α1

ˆ

1

ε2
log

1

ε

˙

for some constant α1 ă 8 that only depends on pX .
‚ the local updater achieves constant update

up1q “ α2

ˆ

1

ε2
log

1

ε

˙

for some constant α2 that only depends on pX .
‚ For all s ě 3

dpsq ă s ¨ dp1q

and
upsq ă s ¨ up1q.

This work was supported by Nokia Bell Labs France within the framework “Computation over Encoded Data with Applications to Large Scale Storage.”
This work was presented in part at the 2019 IEEE International Symposium on Information Theory, Paris, France [1].

S. Vatedka and A. Tchamkerten are with the Department of Communications and Electronics, Telecom Paris, Paris, France. Email: {shashank.vatedka,
aslan.tchamkerten}@telecom-paristech.fr

2

Moreover, if the source is non-dyadic then there exists α3 ą 0 independent of n, ε such that for all s ą α3{ε
2, we have

dpsq ă s ¨ d˚p1q

where d˚p1q denotes the minimum average local decodability that can possibly be achieved by any compression scheme
having rate R ď HppXq ` ε.1

‚ The compression scheme has an overall encoding and decoding computational complexity that is quasilinear in n.
We also show, through a second scheme, that it is possible to achieve pOplog log nq, Oplog log nqq worst-case local decodability
and average update efficiency for any R larger than the entropy HppXq of the underlying source.

Related works: word-RAM and bitprobe models

There has been a lot of work related to local decoding of compressed data structures; see, e.g., [18]–[23] and the references
therein. Most of these results hold under the word-RAM model which assumes that operations are on blocks of Θplog nq bits,
where n denotes the length of the source sequence. It is assumed that operations (memory access, arithmetic operations) on
words of Θplog nq bits take constant time, and the efficiency of a scheme is measured in terms of the time complexity required
to perform local decoding. Therefore, algorithms in all these papers must probe Ωplog nq bits of the codeword even if only to
recover a single bit of the source sequence.

In the word-RAM model it is possible to compress any sequence to its empirical entropy and still be able to locally decode
any message symbol in constant time [18], [19]. In particular, [18] gives a multilevel encoding procedure that is conceptually
related to our first scheme—the difference will be discussed later in Section IV-E. Another compression scheme is due to Dutta
et al. [24] which achieves compression lengths within a p1 ` εq multiplicative factor of that of LZ78 while allowing local
decoding of individual symbols in Oplog n` 1{ε2q time on average. Bille et al. [25] gave a scheme that allows one to modify
any grammar-based compressor (such as Lempel-Ziv) to provide efficient local decodability under the word-RAM model. Viola
et al. [26] recently gave a scheme that achieves near-optimal compression lengths for storing correlated data while being able
to locally decode any data symbol in constant time. There is a long line of work, e.g., [27]–[30], on compression schemes that
allow efficient local recovery of length m ą 1 substrings of the message.

Concerning local update, Makinen and Navarro [31] designed an entropy-achieving compression scheme that supports
insertion and deletion of symbols in Oplog nq time. Successive works [32]–[34] gave improved compressors that support local
decoding, updates, insertion and deletion of individual symbols in Oplog n{ log log nq time.

While the word-RAM model is natural for on-chip type of applications where data transfer occurs through a memory bus
(generally Ωplog nq bits), it is perhaps less relevant for (off-chip) communication applications such as between a server, hosting
the compressed data set, and the client. In this context it is desirable to minimize the number of bits exchanged, and a more
relevant model is the so-called bitprobe model [35] where the complexity of updating or decoding is measured by the number
of bits of the compressed sequence that need to be read or modified to recover or update a single bit of the raw data.

Under the bitprobe model, it is known that a single bit of an n-length source sequence can be recovered by accessing a
constant (in n) number of bits of the codeword sequence [36]–[39]. However, these works typically assume that the source
sequence is deterministic and chosen from a set of allowed sequences, and the complexity of local decoding or update is
measured for the worst-case allowed sequence.

The problem of locally decodable source coding of random sequences has received attention very recently. Mazumdar et
al. [40] gave a fixed-blocklength entropy-achieving compression scheme that permits local decoding of a single bit efficiently.
For a target rate of HppXq ` ε the decoding of a single bit requires to probe dp1q “ Θp 1

ε log 1
ε q bits on the compressed

codeword. They also provided a converse result for non-dyadic sources: dp1q “ Ωplogp1{εqq for any compression scheme that
achieves rate HppXq ` ε. Tatwawadi et al. [41] extended the achievability result to Markov sources and provided a universal
scheme that achieves dp1q “ Θp 1

ε2 log 1
ε q. It should perhaps be stressed that the papers [40], [41] only investigate local decoding

of a single bit and, in particular, they leave open the question whether we can achieve dpsq ă sd˚p1q for s ą 1. It should also
be noted that the construction in these papers make use of the bitvector compressor of Buhrman et al. [36] which in turn is a
nonexplicit construction based on expander graphs. It is also unclear whether their encoding and decoding procedures can be
peformed with low (polynomial-time) computational complexity. Relatedly, Makhdoumi et al. [42] showed interestingly that
any linear source code that achieves dp1q “ Θp1q necessarily operates at a trivial compression rate (R “ 1 for binary sources).

All the above papers on the bit-probe model consider fixed-length block coding. Variable-length source coding was investi-
gated by Pananjady and Courtade [43] who gave upper and lower bounds on the achievable rate for the compression of sparse
sequences under local decodability constraints.

Update efficiency was studied in [44], which used sparse-graph codes to design an entropy-achieving compression scheme
for which an update to any single message bit can be performed by modifying at most up1q “ Θp1q codeword bits. The authors
remarked that their scheme cannot simultaneously achieve dp1q “ Θp1q and up1q “ Θp1q. Related to update efficiency is the

1We guarantee that local decompression of contiguous substrings of the message can be performed more efficiently than repeated local decompression of
the individual bits. If we want to recover s arbitrary non-contiguous message symbols, it is not clear if we can simultaneously achieve rate close to entropy
and dpsq ă sd˚p1q.

3

notion of malleability [45], [46], defined as the average fraction of codeword bits that need to be modified when the message
is updated by passing through a discrete memoryless channel.

Also related is the notion of local encodability, defined to be the maximum number of message symbols that influence
any codeword symbol. Note that this is different from update efficiency, which is the number of codeword symbols that are
influenced by any message symbol. Mazumdar and Pal [47] observed the equivalence of locally encodable source coding with
a problem of semisupervised clustering, and derived upper and lower bounds on the local encodability. Locality has been well
studied in the context of channel coding—see, e.g., [48]–[53] and the references therein.

An outline of this paper is as follows. In Section II, we describe the model. In Section III, we present our results which are
based on two schemes. The first achieves pdp1q, up1qq “ pΘp1q,Θp1qq and the the second scheme achieves pdwcp1q, up1qq “
pOplog lognq, Oplog log nqq. The detailed description of these schemes as well as the proof of the main results appear in
Sections IV and V. In Section VI, we provide a few concluding remarks. We end this section with notational conventions.

Notation

We use standard Bachmann-Landau notation for asymptotics. All logarithms are to the base 2. Curly braces denote sets, e.g.,
ta, b, cu, whereas parentheses are used to denote ordered lists, e.g., pa, b, cq. The set t1, 2, . . . , nu is denoted by rns, whereas
for any positive integers i,m, we define i : i`m to be ti, i` 1, . . . , i`mu. The set of all finite-length binary sequences is
denoted by t0, 1u˚.

Random variables are denoted by uppercase letters, e.g., X,Y . Vectors of length n are indicated by a superscript n, e.g.,
xn, yn. The ith element of a vector xn is xi. Uppercase letters with a superscript n indicate n-length random vectors, e.g.,
Xn, Y n. A substring of a vector xn is represented as xi`mi

def
“ pxi, xi`1, . . . , xi`mq.

Let X be a finite set. For any xn P Xn, let p̂xn be the type/histogram of xn, i.e., p̂xnpaq “
řn

i“1 1txi“au

n . We say that xn is
ε-typical with respect to a distribution pX if for all a P X , we have |p̂xnpaq ´ pXpaq| ď εpXpaq. Let T n

ε denote the set of all
n-length sequences that are ε-typical with respect to pX . We impose an ordering (which may be arbitrary) on T n

ε . If xn P T n
ε

is the ith sequence in T n
ε according to the order, then we say that the index of xn in T n

ε (denoted by indexpxn; T n
ε q) is i.

II. QUERYING AND UPDATING COMPRESSED DATA

The source is specified by a distribution pX over a finite alphabet X . Unless otherwise mentioned, a source sequence or a
message refers to n i.i.d. realizations Xn of the source.

Definition II.1 (Compression scheme). A rate R length n compression scheme, denoted as pn,Rq compression scheme or
pn,Rq fixed-length compression scheme, is a pair of maps pENC,DECq consisting of
‚ An encoder ENC : Xn Ñ t0, 1unR, and
‚ A decoder DEC : t0, 1unR Ñ Xn.

The probability of error is the probability of the event that codeword ENCpXnq is wrongly decoded, that is

Pe
def
“ PrXnrDECpENCpXnqq ‰ Xns.

A. Queries

Given a compression scheme, a local decoder is an algorithm which takes pi, sq P rns2 as input, adaptively queries (a small
number of) bits of the compressed sequence CnR and outputs Xi`s´1

i .
Given s P rns and codeword cnR corresponding to source sequence xn, let dpsqpi, xnq denote the number of symbols of

cnR that need to be queried by the local decoder in order to decode xi`s´1
i without error. The average local decodability of

the code is defined as
dpsq

def
“ max

iPrn´s`1s
Erdpsqpi,Xnqs,

where the average is taken over Xn and possibly any randomness in the query algorithm. Hence, if say dp3q “ 20 then the
local decoder that can recover any length 3 contiguous substring of the source by probing on average 20 symbols from the
codeword sequence.

The worst-case local decodability is defined as

dwcpsq
def
“ max

i,xn
dpsqpi, xnq.

4

B. Updates

Given s P rns, suppose a subsequence xi`s´1
i of the original sequence xn is updated to x̃i`s´1

i so that xn becomes
xi´1x̃i`s´1

i xni`s. A local updater is an algorithm which takes pi, x̃i`s´1
i q as input, probes (a small number of) bits of the

compressed sequence cnR, and modifies a small number of bits of cnR such that the new codeword c̃nR corresponds to the
message xi´1x̃i`s´1

i xni`s. We assume here that the update algorithm probes and modifies cnR given pi, x̃i`s´1
i q only, without

prior knowledge of pxn, cnRq.
Accordingly, let upsqrd pi, x

n, x̃i`s´1
i q and upsqwr pi, xn, x̃

i`s´1
i q denote the number of symbols of cnR that need to be read and

modified, respectively, and let

u
psq
totpi, x

n, x̃i`s´1
i q

def
“ u

psq
rd pi, x

n, x̃i`s´1
i q ` upsqwr pi, x

n, x̃i`s´1
i q.

The average update efficiency of the code is defined as

upsq
def
“ max

iPrn´s`1s
E
”

u
psq
totpi,X

n, X̃i`s´1
i q

ı

where the update X̃i`s´1
i is supposed to be independent of the original sequence Xn but is drawn from the same i.i.d.„ pX

distribution. Hence, updates do not modify the distribution of the original message. The worst-case update efficiency is defined
as

uwcpsq
def
“ max

i,xn,x̃i`s´1
i

u
psq
totpi, x

n, x̃i`s´1
i q.

This paper is concerned about the design of pn,HppXq ` εq compression schemes with vanishingly small probability of
error that allows the recovery and update of short fragments (contiguous symbols) of the message efficiently.

III. MAIN RESULTS

A naive approach to achieve compression with locality is to partition the message symbols into nonoverlapping blocks of
equal size b and compress each block separately with a pb,HppXq ` εq fixed-length compression scheme. The probability of
error for each block can be made to go to zero as 2´Θpbq (see, e.g., [54]). From the union bound, the overall probability of
error is at most pn{bq2´Θpbq. Hence, as long as b “ Ωplog nq we have Pe “ op1q. Since the blocks are encoded and decoded
independently,

dwcp1q “ uwcp1q “ Opbq “ Oplog nq

where the constant in the order term does not depend on ε. The overall computational complexity is at most pn{bq2Θpbq, which
is polynomial in n. Noticing that every subsequence of length s ą 1 is contained in at most rs{bs` 1 blocks, we have:2

Theorem III.1 (Fixed-length neighborhood and compression). For every ε ą 0, the naive scheme achieves a rate-locality
triple of

pR, dwcp1q, uwcp1qq “ pHppXq ` ε,Oplog nq, Oplog nqq .

Moreover,

dwcpsq “

#

Θplog nq, if s ď b

Θpsq, if s ą b

uwcpsq “

#

Θplog nq, if s ď b

Θpsq, if s ą b

where all the order terms are independent of ε. The overall computational complexity required for compression/decompression
is polynomial in n.

It is easy to see that the above analysis is essentially tight as the naive scheme achieves vanishingly small error probabilities
for overall compression and decompression only if b “ Ωplog nq.

In the naive scheme, the recovery or update of a particular symbol Xi involves an Oplog nq-size neighborhood of that symbol
which is compressed by means of a fixed-length compression scheme. To improve upon the Oplog nq locality, we consider
two other schemes. In the first, neighborhoods are of variable lengths and are compressed using a fixed length block code.
The length of the neighborhood of a particular symbol Xi is defined as the length of the smallest typical set that contains Xi.
To find this smallest neighborhood, the algorithm proceeds iteratively by considering larger and larger neighborhoods of Xi

2In case b does not divide n, we can compress the last block of size b`n´tn{bub separately using a (b`n´tn{bub,HppXq`ε)-fixed length compression
scheme. The local decodability and update efficiency would increase by a factor of less than 2, and therefore remain Oplognq. A similar argument can be
made for all the multilevel schemes in the rest of this paper and overall will only introduce an additional constant multiplicative factor. For ease of exposition,
we will conveniently assume in all our proofs that the size of each block divides n.

5

until it finds a neighborhood that is typical. Local decoding and local recovery of Xi are performed by decompressing and
recompressing this neighborhood. This scheme is formally described in Section IV where we prove the following result:

Theorem III.2 (Variable-length neighborhood and fixed length compression). Fix ε ą 0. There exists a scheme which
universally over i.i.d. sources with common known finite alphabet achieves rate R “ HppXq ` ε, and probability of error
PrrDECpENCpXnqq ‰ Xns “ 2´2Ωp

?
log nq

. The average local decodability and update efficiency is

dpsq ď

#

α1
1
ε2 log 1

ε if s ď α21
`

1
ε2 log 1

ε

˘

α11s if s ą α21
`

1
ε2 log 1

ε

˘ ,

upsq ď

#

α2
1
ε2 log 1

ε if s ď α22
`

1
ε2 log 1

ε

˘

α12s if s ą α22
`

1
ε2 log 1

ε

˘ ,

where the constants αi, α1i, α
2
i , i “ 1, 2, are independent of n, ε but dependent on pX . Moreover, the overall computational

complexity of encoding and decoding Xn is Opn log nq. For 1 ď s ď n, the expected computational complexity for local
decoding or updating a fragment of size s is Θpsq, where the proportionality constant depends only on ε and pX .3

Mazumdar et al. [40] proved that d˚p1q “ Ωplogp1{εqq for non-dyadic sources.4 Hence, from Theorem III.2 we get:

Corollary III.1. There exists a universal constant αf ą 0 such that for all non-dyadic sources, the scheme of Theorem III.2
achieves dpsq ă sd˚p1q whenever s ě αf {ε

2.

Given Theorem III.1, the interesting regime of Corollary III.1 is when attempting to locally decode a substring of size s
that satisfies

Ωp1{ε2q ď s ď oplog nq.

Theorem III.2 involves average local decoding and average local update. A natural question is whether we can achieve the
same performance but under worst-case locality, i.e., can we achieve for any 1 ď s ď n

pdwcpsq, uwcpsqq “ pOpsq, Opsqq?

While this question remains open we show that it is possible to achieve pdwcpsq, upsqq “ pOpsqq, Opsqq whenever s “
Ωplog logpnqq. This result is obtained by means of a second scheme where neighborhoods are of fixed length, as in the naive
scheme, but compressed with a variable length code. Using such as a code raises the problem of efficiently encoding the
start and end locations of each subcodeword. Indeed, were we to store an index of the locations of each subcodeword, and
since there are n{b subcodewords, the index would take approximately pn log nq{b additional bits of space. Hence, only to
ensure that the rate remains bounded would require b “ Ωplog nq, which would further imply that dwcp1q and uwcp1q are still
Oplog nq. It turns out that the location of individual subcodewords can be done much more efficiently by means of a particular
data structure for subcodeword location as we show in Section V:

Theorem III.3 (Fixed-length neighborhood and variable-length compression). Fix ε ą 0. There exists a scheme which univerally
over i.i.d. sources with common known finite alphabet achieves a rate-locality triple of

pR, dwcp1q, up1qq “ pHppXq ` ε,Oplog log nq, Oplog log nqq

where order terms are independent of ε.
Moreover, for any s ą 1,

dwcpsq ď

#

2dwcp1q if s ď b1

spHppXq ` εq ` 2dwcp1q otherwise,

and

upsq ď

#

2up1q if s ď b1

2spHppXq ` εq ` 2up1q otherwise,

where b1 “ Oplog log nq. The overall computational complexity of encoding and decoding is polynomial in n.

Analogously to the derivation of Corollary III.1 we get:

Corollary III.2. For non-dyadic sources, there exists a constant αv ą 0 such that the scheme of Theorem III.3 achieves
dwcpsq ă sd˚wcp1q whenever s ě αvplog lognq.

All our results easily extend to variable-length codes with zero error—See Appendix C-1.

3In comparison, the naive scheme requires computational complexity Ωplognq to locally decode or update even a single symbol.
4Recall that d˚p1q denotes the minimum average local decodability that can be achieved by any compression scheme having rate R ď HppXq ` ε.

6

Discussion

Mazumdar et al. [40] gave a compression scheme that achieves R “ HppXq ` ε and dwcp1q “ Θp 1
ε log 1

ε q. The probability
of error decays as 2´Θpnq. This suggests that we can achieve uwcp1q “ Oplog nq using the following scheme. Split the message
into blocks of Oplog nq symbols each, and use the scheme of Mazumdar et al. in each block. We can choose the size of
each block so that the overall probability of error decays polynomially in n. Since each block of size Oplog nq is processed
independently of the others, the overall computational complexity (which may be exponential in the size of each block) is only
polynomial in n. This gives us the following result:

Lemma III.1 (Corollary to [40]). For every ε ą 0, a rate-locality triple of

pR, dwcp1q, uwcp1qq “

ˆ

HppXq ` ε,Θ

ˆ

1

ε
log

1

ε

˙

, Oplog nq

˙

is achievable with polypnq overall encoding and decoding complexity.

Although the above scheme has polypnq computational complexity, this could potentially be a high-degree polynomial.
Moreover, we do not know if the above scheme can achieve dwcpsq ă sdwcp1q for 1 ă s “ oplog nq.

Montanari and Mossel [44] gave a compressor that achieves update efficiency uwcp1q “ Θp1q. The construction is based on
syndrome decoding using low-density parity-check codes. Arguing as above we deduce the following lemma:

Lemma III.2 (Corollary to [44]). For every ε ą 0, a rate-locality triple of

pR, dwcp1q, uwcp1qq “ pHppXq ` ε,Oplog nq,Θp1qq

is achievable with polypnq overall encoding and decoding complexity.

The local decodability of the compressor in [44] cannot be improved as it uses a linear encoder for the compression of
each block, and Makhdoumi et al. [42] showed that for such a compression scheme local decodability (dwcp1q) necessarily
scales logarithmically with block size, hence in our case dwcp1q “ Ωplog nq. Hence, linearity in the encoding impacts local
decodability.

As we note in the following lemma, if we impose the decoder to be linear then it is impossible to even obtain nontrivial
rates of compression:

Lemma III.3. Fix p P p0, 1{2s. Any fixed-length compression scheme with linear decoder and achieving vanishingly small
probability of error for a Bernoulli(p) source has asymptotic rate equal to one.

Proof. Consider any fixed-length scheme having a linear decoder specified by an nˆ nR matrix A. The decoded message is
therefore x̂n “ AcnR. Clearly, the reconstructed message must lie within the column space of A. Therefore, the probability
of error is upper bounded by

PrrX̂n ‰ Xns ď PrrXn R SpAqs,

where SpAq denotes the column space of A and has dimension at most nR. From [42, Lemma 1],

PrrXn R SpAqs ď 1´ pnp1´Rq,

which can be op1q only if R “ 1´ op1q. In other words, we cannot achieve an asymptotic rate of less than one.

IV. PROOF OF THEOREM III.2

We now present our compression scheme which achieves constant pdp1q, up1qq. We assume first that the source distribution
pX is known, as it is conceptually simpler. The universal scenario is handled separately in Section IV-I.

Before giving a formal description of our scheme, let us give some intuition.

A. Intuition

The main idea is to analyze the message sequence at multiple levels: At the coarsest level, we view the message as a single
block of size n. At the finest level, we view it as a concatenation of blocks of size b0 “ Θp1q. As depicted in Figure 1,
we can refine this by saying that at level `, the message is viewed as a concatenation of n`-sized neighborhoods, where
b0 ă n1 ă n2 ă . . . ă n. If b0 “ Θp1q, then a positive fraction of the level-0 neighborhoods are atypical with high probability,
while neighborhoods at higher levels are more likely to be typical.

Corresponding to each b0-sized block, we identify the smallest typical neighborhood containing the block. In the example
of Figure 1, the smallest typical neighborhood of xb0p1q is xn1p1, 1q at level 1, while that of xb0p2q is xb0p2q itself. The
main idea in our scheme is to efficiently encode typical neighborhoods at each level, and local decoding/update of a symbol
is performed by decompressing/recompressing only the smallest typical neighborhood containing it.

7

... ...

level-1 neighborhoods

level-2 neighborhoods

level-3 neighborhoods

... ...

level-0 neighborhoods

Fig. 1: Intution for the multilevel compression scheme in Section IV-B. We group together symbols to form larger neighborhoods.
If we have an efficient means to compress these neighborhoods, then we can locally decode a block by decompressing the
smallest typical neighborhood of that block. Blocks colored blue are typical, while the red blocks are atypical.

101100

Fig. 2: Illustrating the compression scheme for levels ` ě 1 as described in Definition IV.2. In this example, we have used
b “ 6 and ε “ 1{2.

Our actual scheme is more nuanced. We will view the message sequence at different levels, but use a different definition
of typicality at each level. Compression of the neighborhoods is performed in an iterative fashion, starting from level 0, and
then moving to higher levels. At level `, we only compress the residual information of each neighborhood, i.e., that which is
not recoverable from the first `´ 1 levels.

Local decoding of a symbol is performed by successively answering the question “Is the level-` neighborhood typical?” for
` “ 0, 1, . . ., till we get a positive answer. The desired symbol can be recovered from the typical neighborhood.

We proceed with the formal description of our scheme.

B. Compression scheme

Fix ε0 ą 0. Let b0
def
“ n0

def
“ Θp 1

ε20
log 1

ε0
q where the implied constant is chosen so that

PrrXb0 R T b0
ε0 s ď ε4

0,

and let
k0

def
“ rpHppXq ` ε0qb0s.

For ` ě 1, let
ε` “ ε`´1{2,

b` “ 4b`´1,

n` “ b`n`´1,

and let `max be the largest ` such that n` ď n.
Notice that `max “ Θp

?
log nq.

The overall encoding/decoding involves a multilevel procedure over `max levels. At each level, we generate a part of the
codeword and modify the input string in an entropy decreasing manner until the string becomes a constant. The scheme uses
a special marker symbol, referred to as ˛, that is not in X . This symbol will be used to denote that we have been able to
successfully compress a part of the message at an earlier stage.

Definition IV.1 (˛ blocks and non-˛ blocks). A vector vm is said to be a ˛-block if vi “ ˛ for all i. It is called a non-˛ block
if there exists an i such that vi ‰ ˛.

8

group

group

Level 0 codewords

input

modi�ed

message

modi�ed

message

modi�ed

message

original

message

... ...

Typical set compression

... ...

... ...

Level 1 codewords

......

Level 2 codewords

Fig. 3: Illustrating the multilevel compression scheme. Red and blue blocks denote atypical and typical blocks respectively,
while green blocks denote nonzero codewords. For ease of illustration, we have used b` “ 2b`´1.

1) Level ` “ 0: partition xn into n{b0 blocks of length b0 “ n0 each. Let xn0pjq
def
“ xjn0

pj´1qn0`1 denote the jth block of the
message symbols. Blocks at level ` “ 0 are processed independently of each other. For each xn0pjq, we generate a codeword
block ck0pj, 0q and possibly modify xn0pjq:
‚ If xn0pjq is typical, then ck0pj, 0q is assigned the index of xn0pjq in T n0

ε0 , else ck0pj, 0q “ 0k0 .
‚ If xn0pjq is typical, then xn0pj, 0q is modified to a diamond block ˛n0 and if xn0pjq is not typical then xn0pj, 0q is kept

unchanged. The message sequence after possible modifications of each block xn0pj, ` “ 0q, j “ 1, 2, . . . is denoted by
xnp` “ 0q.

For compression at higher levels, we make use of the following code

Definition IV.2 (Code for levels ` ě 1). Fix any positive integers b,m. Let X be a finite alphabet, and ˛ be a symbol such
that ˛ R X . Let S Ă pX Y t˛uqmb be the set of all sequences of the form ymb “ pymp1q, ymp2q, . . . , ympbqq such that
ympjq P pX Y t˛uqm and at least p1´ εqb fraction of the ympjq’s are ˛ blocks.

For any sequence ymb P S , let j1, j2, . . . , jk denote the locations of the non-˛ blocks. Let eb “ φpymb; b,mq be the b-length
indicator vector for the non-˛ blocks, i.e., the jth element of φpymb; b,mq is 1 iff ymbpjq is a non-˛ block. Let

ψpymb; b,m, εq
def
“ peb, ymbpj1q, , . . . , y

mbpjkq, ˛
mpεb´kqq.

In other words, ψ consists of a header eb to locate the non-˛ blocks, followed by a concatenation of all the non-˛ blocks. The
binary representation of ψ requires b` εmb logp|X | ` 1q bits. The mapping ψ is one-to-one on S. Both ψ and ψ´1 (for any
element in the range of ψ) can be computed using Θpmbq operations. An example is illustrated in Figure 2.

2) Levels ` ě 1: having generated codewords up to level ` ´ 1 and having modified the message if necessary, we form
groups of b` consecutive blocks from xnp` ´ 1q to obtain blocks of size n` “ b`n`´1. The jth block at level `, denoted
xn`pj, `q, is therefore

pxn`´1ppj ´ 1qb` ` 1, `´ 1q, . . . , xn`´1pjb` ` 1, `´ 1qq.

Similarly to level ` “ 0, for each of these blocks of size n`, we generate a codeword and modify it if necessary:
‚ If xn`pj, `q is “typical,” i.e., has at least p1 ´ ε`qb` ˛-blocks (of size n`´1), then we set the subcodeword ck`pj, `q of

length k` “ b` ` ε`n` logp|X | ` 1q using the scheme described in Definition IV.2.5 If this block is “atypical,” i.e., has
fewer than p1´ ε`qb` many ˛ blocks, then ck`pj, `q “ 0k` .

5One could use a more sophisticated scheme to get better performance. However, we can get order-optimal pd, uq even with this very simple scheme.

9

‚ If xn`pj, `q has at most ε`b` many non-˛-blocks, then we modify xn`pj, `q to a diamond block ˛n` . Otherwise, the group
is left untouched.

Hence, at each level the input sequence gets updated with more and more ˛’s as larger and larger subsequences become
typical. As we show in Section IV-F, the entropy of the message keeps decreasing till it becomes zero, once it becomes the
all-˛ sequence. Finally, the stored codeword is the concatenation of codewords of all levels:

cnR “ pck0p1 : n{n0, 0q, . . . , c
k`max p1 : n{n`max

, `maxqq.

Example IV.1 (Figure 3). An example of the encoding process is illustrated in Figure 3 where the blue blocks refer to typical
blocks whereas the red blocks refer to atypical blocks.

At level 0, the subcodewords ck0pi, 0q are obtained using typical set compression. The subcodeword ck0pi, 0q is zero if the
block is atypical, and nonzero (depicted in green in the figure) if it is typical. We then modify the message, replacing each
typical level-0 block with ˛b0 .

For ease of illustration, we select b1 “ 2 and ε1 “ 1{2. Hence the blocks are grouped in pairs to obtain xn1pi, 1q, 1 ď i ď 8.
A block xn1pi, 1q is typical if it contains at most one non-˛ block of length n0. Therefore, only xn1p2, 1q and xn1p7, 1q are
atypical. These blocks are compressed to get the level-1 codewords ck1pi, 1q for 1 ď i ď 8. As earlier, typical blocks are
encoded to nonzero codewords, while atypical blocks are compressed to the zero codeword. Post compression, we again modify
the message by replacing typical blocks with ˛n1 .

The encoding process proceeds in an identical fashion for level 2, where we have selected b2 “ 4 and ε2 “ 1{4.

C. Local decoding

Suppose that we are interested in recovering the mth message symbol xm, where m P pj ´ 1qn0 : jn0.
‚ We probe ck0pj, 0q. If the block xn0pjq is typical, then we can directly recover xn0pjq from ck0pj, 0q.
‚ If xn0pjq is not typical, we probe higher levels successively till we reach the smallest level ` for which the block that

includes xn0pjq, which we denote as xn`pq`pjq, `q is a diamond ˛n` - block. This can be determined by reading the first bi
bits of ckipqipjq, iq, i “ 1, 2, . . . , ` since this corresponds to the indicator vector of the non-˛ blocks at each level i ď `.
If we can recover xb0pjq by probing up to the first ` levels, then we say that the jth block is encoded at the `th level.

‚ Using this approach, we automatically recover the entire block xb0pjq—not only an individual message symbol. If we
want to recover multiple message blocks, we repeatedly employ the same algorithm on each block.6

We revisit our earlier example to illustrate the local decoder.

Example IV.2 (Figure 3). Suppose that we are interested in recovering xb0p2q. The local decoder first probes ck0p2, 0q. Since
this is a nonzero codeword, xb0p2q can be obtained by decompressing ck0p2, 0q. In this process, the local decoder probes k0

bits.
Suppose that we are instead interested in recovering xb0p3q. On probing ck0p3, 0q, the local decoder obtains a zero codeword.

Next, it probes ck1p2, 1q. This is also zero. Finally, the local decoder probes ck2p1, 2q which is nonzero, and xb0p3q can be
obtained by decompressing this codeword. In this case, the local decoder probes k0 ` k1 ` k2 bits.

D. Local updating

The local updating rule is a little more involved. Assume that the jth block xn0pjq is to be updated with x̃n0pjq.
‚ If both xn0pjq and x̃n0pjq are typical, only cn0pj, 0q needs to be updated. Whether xn0pjq is typical or not can be

determined by reading ck0pj, 0q.
‚ If both xn0pjq and x̃n0pjq are atypical, then we probe higher levels till we reach the level ` where xn0pjq is encoded,

and update ck0pq`pjq, `q.
‚ If xb0pjq is typical and x̃b0pjq is atypical, then we need to update cb0pj, 0q and the blocks at higher levels. Due to the

atypicality, the number of non-˛ blocks for level 1 increases by 1, and hence c`1pq1pjq, 1q must be updated. If the number
of non-˛ blocks now exceeds ε1b1, then we would also need to update the codeword at level 2, and so forth.

‚ If xb0pjq is atypical and x̃b0pjq is typical, then the number of non-˛ blocks at each level might decrease by 1 (or 0). If
xb0pjq were encoded at level i, then we might need to update the codeword blocks up to level i.

Let us illustrate the local updater in the context of our earlier example.

Example IV.3 (Figure 3). Suppose that we want to replace xb0p5q with rxb0p5q. The local updater first probes ck0p5, 0q to
conclude that xb0p5q is encoded at level 0.

If rxb0p5q is also typical, then only ck0p5, 0q needs to be updated, and the rest of the codeword remains untouched. The
updater probes k0 bits and modifies k0 bits.

6We can actually do much better than naively repeating the algorithm for multiple blocks. However, for ease of exposition and proofs, we use the naive
algorithm.

10

In case rxb0p5q is atypical, then the local updater first sets ck0p5, 0q to 0k0 . It then probes ck1p3, 1q and decompresses this
to recover xn1p3, 1q. This block is updated with rxb0p5q, and the new level 1 block rxn1p3, 1q is typical. Therefore, ck1p3, 1q
is updated with the codeword corresponding to rxn1p3, 1q, and the update process is terminated. In this scenario, the updater
probes k0 ` k1 bits and modifies k0 ` k1 bits.

E. Connections with Pătraşcu’s compressed data structure [18]

In [18], Pătraşcu gave an entropy-achieving compression scheme that achieves constant-time local decoding in the word-RAM
model. The compressor has a multilevel structure whose concept inspired our work.

The basic idea in [18] is the following. At level 0, split the message into blocks of b0 symbols each, compress each block
using an entropy-achieving variable-length compression scheme, and store a fixed number of the compressed bits of each block.
The remainder is called the “spill,” and is encoded in higher levels. At level i ě 1, the spills from each block of level i´1 are
grouped together to form larger blocks, and compressed in a fashion similar to level 0. Reconstruction of any block necessarily
requires both the codeword at level-0 and the spill. As a result, the local decoder of [18] must always probe subcodewords of
all levels, and the number of bitprobes required to recover even one symbol is Ωplog nq.

In our scheme on the other hand encoding is such that the number of levels that the local decoder needs to probe to
retrieve one block depends on the realization of the source message. In particular, the local decoder need not always probe all
levels—and indeed, probes a small number of levels.

Hence, in Pătraşcu’s scheme the information about a particular block is spread across multiple levels whereas in our scheme
this information is stored at a particular level that depends on the realization of the message.

In the next section we establish Theorem III.2 assuming the underlying source pX is known. Universality is handled separately
in Section IV-I.

F. Bounds on dp1q and up1q

We now derive bounds on the average local decodability and update efficiency. In the following, we will make use of some
preliminary results that are derived in Appendix A.

Lemma IV.1. If ε0 ă 1{2, then
dp1q ď 2b0.

Proof. We can assume without loss of generality that we want to recover X1.
If X1 is encoded at level i, then the local decoder probes

ři
i1“0 ki1 bits. Therefore,

Erdp1qpXn, b0qs ď b0 `
`max
ÿ

i“1

˜

PrrX1 is encoded at level is
i
ÿ

i1“0

ki1

¸

ď b0 `
`max
ÿ

i“1

˜

PrrX1 is encoded at level is
i
ÿ

i1“0

ni1

¸

ď b0 `
`max
ÿ

i“1

´

pi` 1qniPrrX1 is encoded at level is
¯

. (1)

Let δp1qiÑi`1 denote the conditional probability that xnip1, iq is not the all-˛ block given that xni´1p1, i´ 1q is not a ˛-block.
Then,

PrrX1 is encoded at level is ď δ0Ñ1

i´1
ź

i1“1

δ
p1q
i1Ñi1`1

From Lemma A.3, specifically (8), we know that δp1qiÑi`1 ď εβ2i´1

i for i ě 1. The quantity β is defined in (5). Therefore,

PrrX1 is encoded at level is ď εβ2i´1

i . (2)

Since ni1 “ bi1`1
0 2i1pi1`1q, we have

pi` 1qni ď pi` 1qbi`1
0 2ipi`1q.

Using this and (2) in (1), we have

Erdp1qpXn, b0qs ď b0 `
`max
ÿ

i“1

pi` 1qbi`1
0 2ipi`1qεβ2i´1

i . (3)

11

It is easy to show that pi` 1qbi`1
0 2ipi`1qεβ2i´1

i ď εi0 for all i ě 1 (see Lemma A.4 for a proof). Therefore,

dp1q “ Erdp1qpXn, b0qs ď b0 ` ε0b0

dmax
ÿ

i“1

εi0 ă 2b0

if ε0 ă 1{2. This completes the proof.

Lemma IV.2. If ε0 ă 1{2, then
up1q ď 8b0.

Proof. The calculations are identical to those in Lemma IV.1, so we will only highlight the main differences. Again, we can
assume that the first symbol needs to be updated.

Suppose U b0p1q is the new realization of the message block that needs to be updated. Let iold denote the level at which
Xb0p1q is encoded in the codeword for Xn, and let inew be the level at which U b0p1q is encoded in the codeword for
U b0p1q, Xpb0qp2q, . . . , Xb0pn{b0q. The number of bits that need to be read is upper bounded by

urd ď maxtpiold ` 1qniold
, pinew ` 1qninew

u ď piold ` 1qniold
` pinew ` 1qninew

.

Likewise, the number of bits that need to be written is

uwr ď maxtpiold ` 1qniold
, pinew ` 1qninew

u ď piold ` 1qniold
` pinew ` 1qninew

.

Since the U b0piq is independent of everything else and does not change the message distribution, uwcp1q is at most 4 times
the upper bound in (1). Using the calculations in the proof of Lemma IV.1, the expected number of bits to be read and written
is at most 8b0.

G. Proof of Theorem III.2 assuming that pX is known

1) Rate of the code: Recall that ki is the length of a subcodeword in the ith level. The achievable rate is given by

R “
1

n

`max
ÿ

i“0

ki
n

ni
“

`max
ÿ

i“0

ki
ni
.

We have k0 ď pHppXq ` ε0qb0. From Definition IV.2, we have

ki “ bi ` εini logp|X | ` 1q

“ ni

ˆ

1

ni´1
` εi logp|X | ` 1q

˙

ď ni

´ ε0

2ipi´1q
`
ε0

2i
logp|X | ` 1q

¯

ď nip1` logp|X | ` 1qq
ε0

2i
.

Therefore,

R ď HppXq ` ε0 ` p1` logp|X | ` 1qq
dmax
ÿ

i“1

ε0

2i

ď HppXq ` ε0p2` logp|X | ` 1qq.

Hence, the rate is HppXq `Θpε0q.
We show in Corollary A.1 (See Appendix A) that the probability of error is upper bounded by 2´2Op

?
log nq

.
2) Average local decodability and update efficiency: In Lemmas IV.1 and IV.2, we have established that dp1q and up1q are

both Θp 1
ε20

log 1
ε0
q.

Any sequence of s consecutive message symbols is spread over at most rm{b0s ` 1 level-0 blocks. For any s ď b0, it is
clear that dpsq ď 2dp1q. For s ą b0,

dpsq ď prs{b0s` 1qαldb0 “ α1s,

for some absolute constant α1 independent of ε0 and n. Likewise,

upsq “ α2s.

for some α2 independent of n, ε0.

12

3) Computational complexity: Since b0 is a constant independent of n, the total complexity for encoding/decoding all the
codewords at level zero is Θpnq. From Definition IV.2, the computational complexity of decoding a block at level i is linear in
ni, and there are n{ni blocks at level i. Since the total number of levels `max is Oplog nq, the overall computational complexity
is Opn log nq. A similar argument can be made to show that the expected computational complexity for local decoding/updating
of a fragment of length s is Θpsq.

H. Variable-length source code with zero error

Note that Theorem III.2 guarantees the existence of a fixed-length source code with a vanishing probability of error. However,
in most applications, we want zero error source codes. The scheme of Appendix C-1 allows us to modify our code to give a
locally decodable and update efficient variable-length compressor.

After the modification in Appendix C-1, dp1q can increase by no more than 1. If the probability of error Pe is op1{nq, then
the expected update efficiency also remains Θ

`

1
ε2 log 1

ε

˘

. If the original fixed-length code has rate HppXq ` ε and probability
of error Pe, then the new code has rate p1´PeqpHppXq` εq`Pe, which asymptotically approaches HppXq` ε if Pe “ op1q.

I. Universal compression using Lempel-Ziv as a subcode

We show that the performance by the coding scheme described above can be achieved even if the source pX is unknown to
the encoder and local decoder/updater.

Let Ci denote the pni, ki{niq fixed-length compression scheme at level i in Section IV-B. In Section IV-B, we chose C0 to
be the typical set compressor. In this section, we will replace this with a fixed-length compressor based on LZ78 [12].

We first redefine what it means for a sequence to be typical.

Definition IV.3. For any δ ą 0 and b P Z`, we say that xb P X b is δ-LZ typical with respect to pX if the length of the LZ78
codeword corresponding to xb, denoted `LZpxbq, is less than bpHppXq ` δq.

The above notion of typicality leads to a natural computationally-efficent fixed-length compression scheme.

Definition IV.4 (Fixed-length compression scheme derived from LZ78). Let T b
δ,LZ denote the set of all sequences that are

δ-LZ typical with respect to pX . Associated with this is a natural pb,HppXq ` δq fixed-length compression scheme which we
denote CLZpb,HppXq, δq: For any xb P X b, the corresponding codeword in CLZpb,HppXq, δq is given by

ybpHppXq`δq “

#

r1,ENCLZpx
bq, 0bpHppXq`δq´`LZpx

b
qs if `LZpxbq ă bpHppXq ` δq

0bpHppXq`δq otherwise,

where ENCLZ denotes the LZ78 encoder.

We can now describe the modifications required in the scheme of Section IV-B in order to achieve universal compression.
The universal compressor with locality: The global encoder uses the empirical estimate of pX to choose b0 and k0, which

are encoded in the first Θp1q bits (the preamble) of the compressed sequence7. The parameter ε0 can be fixed beforehand, or
otherwise stored in the preamble. The rest of the codeword is generated as in Section IV-B but with C0 being CLZ .

The following theorem summarizes the main result of this section, and completes the proof of Theorem III.2. The proof
uses some technical lemmas that are formally proved in Appendix B.

Theorem IV.1. Fix a small ε ą 0. The coding scheme in Section IV-B with C0 chosen to be CLZ achieves rate

R “ HppXq ` ε,

probability of error
PrrDECpENCpXnqq ‰ Xns “ 2´2Ωp

?
log nq

,

and average local decodability and update efficiency

dpsq ď

#

α1
1
ε2 log 1

ε if s “ O
`

1
ε2 log 1

ε

˘

α11s if s “ Ω
`

1
ε2 log 1

ε

˘ ,

upsq ď

#

α2
1
ε2 log 1

ε if s “ O
`

1
ε2 log 1

ε

˘

α12s if s “ Ω
`

1
ε2 log 1

ε

˘ ,

where α1, α
1
1, α2, α

1
2 are constants independent of n, ε but dependent on pX .

The overall computational complexity of encoding and decoding Xn is Opn log nq.

7One way to store b0 (resp. k0) is by 1b00kb´b0 (resp. 1k00kb´k0) for a large enough predetermined value of kb “ opnq.

13

Typical block Atypical block

[0 0 0 1 1 0 1]

Message

codeword for
ith block

Fig. 4: Compression of each block as described in Section V-1. Typical subblocks are compressed to « b1HppXq bits, while
atypical subblocks are stored without compression. The address of ylipiq on disk can be easily computed using rank and select
operations on ξb0{b1piq.

Proof. We set k0 “ b0pHppXq ` ξpε0, b0qq, where

ξpε0, b0q–

ˆ

2`max
aPX

log
1

pXpaq

˙

ε0 `
c log log b0

log b0
.

In the above, c denotes the constant that appears in Lemma B.1. Clearly, k0 “ b0pHppXq ´ Θpε0qq. At level 0, we use
C0 “ CLZpb0, HppXq, ξpε0, b0qq. The rest of the compression scheme is exactly as in Section IV. From our choice of parameters
and Lemma B.1, it is easy to see that `LZpxb0pjqq ď k0 ´ 1 as long as xb0pjq P T b0

ε0 . Therefore, the calculations in the proof
of Theorem III.2 can be invoked to complete the proof.

The rate is HppXq`Θpε0q, while dpsq and upsq are (up to constants depending only on pX) the same as in Theorem III.2.

V. PROOF OF THEOREM III.3
We now describe our algorithm which achieves worst-case local decodability and average update efficiency of Oplog log nq.

The basic idea is the following: We partition the message symbols into blocks of Oplog log nq symbols each, and compress each
block using a simple variable-length compression scheme. To locate the codeword corresponding to each block, we separately
store a data structure that takes opnq space. This data structure allows us to efficiently query certain functions of the message.

For ease of exposition, we assume that pX is known. Universality can be achieved by replacing the typical set compressor
in our scheme with a universal compressor such as LZ78 (as we did in Section IV-I).

Definition V.1 (Rank). Let zm denote an m-length binary sequence. For any i P rms, the rank, RNKipzmq denotes the number
of 1’s in (or the Hamming weight of) zi1.

Our construction for efficient local decoding and updates is based on the existence of compressed data structures that allow
query-efficient computation of rank. Let hp¨q denote the binary entropy function.

Lemma V.1 ([33]). Let m be a sufficiently large integer, and fix 0 ă α ă 1{2. Then, there exists a mapping f pαqsc : t0, 1um Ñ
t0, 1umphpαq`op1qq such that for every xn P t0, 1um with Hamming weight at most αm,
‚ xm can be recovered uniquely from f

pαq
sc pxmq

‚ For every 1 ď i ď m, the rank RNKipx
mq can be computed by probing at most Oplogmq bits of f pαqsc pxmq in the worst

case.

1) Encoding: We partition the source sequence xn into blocks of b0 “ Oplog nq symbols each: xn “ pxb0p1q, . . . , xb0pn{b0qq.
We further subdivide each block into subblocks of b1 symbols each, i.e., xb0piq is partitioned into pxb1pi, 1q, . . . , xb1pi, b0{b1qq.
The symbols xb0piq’s are encoded independently of each other using a fixed length code which has a vanishingly small
probability of error. The codeword for each block consists of two parts:
‚ Corresponding to every xb1pi, jq, we generate ylij pi, jq, which is given by

ylij pi, jq “

#

indexpxb1pi, jq; T b1
ε0 q if xb1pi, jq P T b1

ε0

xb1pi, jq otherwise.

14

Observe that the above is not a fixed-length code. The length of the pi, jqth codeword lij is equal to log |T b1
ε0 | if xb1pi, jq

is typical and b1 otherwise. Additionally, let

ξpi, jq “

#

0 if xb1pi, jq P T b1
ε0

1 otherwise.

be an indicator of whether the pi, jqth block xb1pi, jq is atypical. Let ξb0{b1piq “ pξpi, 1q, . . . ξpi, b0{b1qq and define

z`z piq
def
“

#

f
pε1q
sc pξb0{b1piqq if ξb0{b1 has Hamming weight at most ε0b0{b1

0` otherwise,

where fsc is the compressed data structure in Lemma V.1. Let `y
def
“ p1 ´ 2ε0qpHppXq ` εqb0 ` 2ε0b0 log |X | and

l1i “ `y ´
ř

j lij

y`y piq
def
“

#

pyli1pi, 1q, . . . , ylib0{b1 pi, b0{b1q, 0
l1iq if

ř

j lij ď `y

0`y otherwise.

The second case would correspond to an error.
‚ The codeword c`cpiq corresponding to xb0piq is a sequence of length `c “ `y ` `z , and is equal to the concatenation of
z`z piq and y`y piq.

Example V.1 (Figure 4). Consider the encoding of each b0-length block as illustrated in Figure 4. In this example, b0{b1 “ 7.
Subblocks 4, 5, 7 are atypical. Therefore, ylij pi, jq “ xb1pi, jq and lij “ n1 for j “ 4, 5, 7. The remaining subblocks are
compressed using the typical set compressor. The indicator vector ξ6piq “ r0001101s, and is compressed to get z`z piq using
the scheme in Lemma V.1. The overall codeword for block i is the concatenation of z`z piq and ylij pi, jq, 1 ď j ď 7.

2) Local decoding of a subblock: Our scheme allows us to locally decode an entire b1-length subblock and local recovery
of a single symbol is performed by locally decoding the subblock containing it.

Suppose that we want to locally decode xb1pi, jq. Our local decoder works as follows:
‚ Compute natyp, the number of atypical subblocks in the first j subblocks of the ith block. This is equal to RNKjpξ

b0{b1piqq
and can be obtained by probing Oplogpb0{b1qq bits of z`z piq.

‚ Compute ξpi, jq from z`z piq. This could be recovered by first decoding RNKj`1pξ
b0{b1piqq and subtracting RNKjpξ

b0{b1piqq
from this. This tells us whether the block we we want to decode is atypical.

‚ Given the above information, it is easy to decode the pi, jqth block. Let k1 “ natypb1 ` pj ´ 1´ natypqb1pHppX ` ε0qq.

ŷ`ij pi, jq “

#

y
k1`b1pHppX`ε0q
k1

if ξpi, jq “ 0

yk1`b1
k1

otherwise.

The estimate of the message block xb1pi, jq is obtained by decompressing ŷ`ij pi, jq.
Let us revisit the previous example.

Example V.2 (Figure 4). Figure 4. Suppose that we are interested in recovering xn1pi, 5q.
The local decoder first finds RNK4pz

`z piqq “ 1 and RNK5pz
`z piqq “ 2 using the probing scheme in Lemma V.1. This reveals

that xn1pi, 5q is atypical, and one out of four subblocks prior to xn1pi, 5q is atypical. The starting location of xn1pi, 5q in
y`ipiq is m

def
“ 3n1pHppXq ` εq ` n1 ` 1. The desired block is recoverable from ym`n1´1

m piq.

3) Update algorithm: We consider update of xb1pi, jq with a new symbol denoted rxb1 . Let

ỹ` “

#

pindexprxb1q; T b1
ε0 q if rxb1 P T b1

ε0

rxb1 otherwise.

The update algorithm works as follows:
‚ Compute natyp and xb1pi, jq by running the local decoding algorithm above.
‚ If both rxb1 and xb1pi, jq are typical (or both atypical), then updating the codeword is trivial as it only requires replacing
y`ij pi, jq with ỹ`. In this case, only Oplog b0q bits need to be read and written in order to update the codeword.

‚ If only one of rxb1 and xb1pi, jq is typical, then the entire code block c`cpiq is rewritten with the encoding of

rxb0
def
“ pxb1pi, 1q, . . . , rxb1 , . . . , xb1pi, b0{b1qq.

In this case, a total of Opb0q bits need to be read and modified to effect the update.

15

A. Proof of Theorem III.3

We choose b0 “ c0 log n and b1 “ c1 log log n, where c0 and c1 are constants that need to be chosen appropriately. The
probability that a subblock is atypical is p0 “ 2´Θpε20b1q. We choose c1 so that this probability is at most 1{ log2 n. Recall
that a b0-block is in error if more than 2ε0 fraction of the subblocks are atypical. Using Chernoff bound, this is at most
p1 “ 2´Ωpb0{b1q. We can choose c0 so as to ensure that p1 is at most n´2. The probability that the overall codeword is in
error is at most np1 “ op1q.

We therefore have a fixed-length compression scheme with a vanishingly small probability of error. The worst-case local
decodability is dwcp1q “ Θpb1q. Updating a subblock might lead to a typical block becoming atypical (or vice versa). Therefore,
the average update efficiency is

up1q “ p1´ p1qΘpb1q ` p1Θpb0q “ Oplog log nq.

This gives the first part of the theorem.
Any s-length substring is contained in at most rs{b1s` 1 subblocks of size b1. We can therefore locally decode/update any

m-length substring by separately running the local decoding/update algorithm for each of the rs{b1s` 1 subblocks. Therefore,

dwcpsq ď

ˆR

s

b1

V

` 1

˙

dwcp1q

ď

#

2dwcp1q if s ď b1

spHppXq ` εq ` 2dwcp1q otherwise.

The calculation of uwcpsq proceeds identically. This completes the proof of the second part of Theorem III.3.

VI. CONCLUDING REMARKS

In this paper, we gave an explicit, computationally efficient entropy-achieving scheme that achieves constant average local
decodability and update efficiency. Our scheme also allows efficient local decoding and update of contiguous substrings. For
s “ Ωp1{ε2q, both dpsq and upsq grow as Θpsq, where the implied constant is independent of n and ε.

It still remains an open problem as to whether pdwcp1q, uwcp1qq “ pΘp1q,Θp1qq is achievable. We described a scheme with
pdwcp1q, up1qq “ pOplog log nq, Oplog log nqq. Even showing that pdwcp1q, uwcp1qq “ pOplog log nq, Oplog log nqq is achievable
would be an interesting step in this direction.

Although we did not optimize the hidden constants in our analysis, the dependence on ε in our scheme cannot be improved
by using tighter bounds. This is because we used a lossless compression scheme at level 0, and we require b0 “ Ωp 1

ε2 log 1
ε q

to guarantee concentration. Mazumdar et al. [40] used a slightly different approach, and gave a two-level construction with
a lossy source code at the zeroth level. This allowed them to achieve dwcp1q “ Θp 1

ε log 1
ε q. Finding the right dependence of

pdwcp1q, uwcp1qq or pdp1q, up1qq on ε is an interesting open question.

APPENDIX A
PRELIMINARY LEMMAS FOR THE PROOF OF THEOREM III.2

Lemma A.1. Let Xb be a b-length i.i.d. sequence where the components are drawn according to pX . For any positive α, and
0 ă ε ă 1{2, if

b ě 3pα` log |X |q
ˆ

max
aPX

1

pXpaq

˙ˆ

1

ε2
log

1

ε

˙

,

then
PrrXb R T b

ε s ď εα.

Moreover,
|T b
ε | ď 2bpHppXq`εq.

Proof. The first part can be easily derived using Chernoff and union bounds. The second part is a standard property of typical
sets. See, e.g., the book by El Gamal and Kim [55] for a proof.

Lemma A.2. Let δi´1Ñi denote the probability that the message block from level i ´ 1, say xni´1pj, i ´ 1q, is not the all-˛
block. If ε0 ă 1{2, δi´1Ñi ď ε4

i , and

b0 ě 3p8` log |X |q
ˆ

max
aPX

1

pXpaq

˙ˆ

1

ε2
0

log
1

ε0

˙

,

Then,
δiÑi`1 ď εβ2i

i , (4)

16

where
β “ 9p8` log |X |q

ˆ

max
aPX

1

pXpaq

˙ˆ

1

ε0
log

1

ε0

˙

(5)

This implies that
δiÑi`1 ď ε4

i`1. (6)

Proof. Recall that a message block from level i is not a ˛-block only if there are more than εibi non-˛-blocks from level i´1.
Therefore,

δiÑi`1 ď

ˆ

bi
εibi

˙

δεibii´1Ñi

ď

ˆ

δi´1Ñi

εi

˙εibi

ď ε3εibi
i (7)

However,

εibi “ ε02´ib022i “ ε0b02i.

Using the lower bound for b0 in the above equation and substituting in (7) gives us (4). Inequality (6) follows from (4) by
observing that ε0 ă 1{2.

The probability of error therefore decays quasiexponentially in n as described by the following corollary.

Corollary A.1. Suppose we use the parameters as defined in Lemma A.2, and choose bi “ 22ib0 and εi “ ε0{2
i. Then, the

probability that the encoder makes an error, i.e., that the message is not compressed within `max levels, is 2´Ωp`max2`max q. If
the number of levels is Θp

?
log nq, then this is 2´2Ωp

?
log nq

.

The following lemma will be used to compute the average local decodability and update efficiency.

Lemma A.3. Let δp1qiÑi`1 be the conditional probability that the message block from level i, say xnip1, iq is not the all-˛ block
given that a fixed block from level i´ 1, say xni´1p1, i´ 1q, is not a ˛-block. If ε0 ă 1{2, δp1qi´1Ñi ď ε4

i , and

b0 ě 3p8` log |X |q
ˆ

max
aPX

1

pXpaq

˙ˆ

1

ε2
0

log
1

ε0

˙

.

Then,
δ
p1q
iÑi`1 ď εβ2i´1

i , (8)

where β “ 9p8` log |X |q
´

maxaPX
1

pXpaq

¯´

1
ε0

log 1
ε0

¯

. This implies that

δ
p1q
iÑi`1 ď ε4

i`1. (9)

Proof. Clearly,

δ
p1q
iÑi`1 ď

ˆ

bi ´ 1
εibi ´ 1

˙

´

δ
p1q
i´1Ñi

¯εibi´1

.

The remainder of the proof is almost identical to that of Lemma A.2, and we skip the details.

The following result will be useful when bounding the average local decodability in Lemma IV.1.

Lemma A.4. For all i ě 1 and b0 ě 3, we have

pi` 1qbi`1
0 2ipi`1qεβ2i´1

i ď εi0.

Proof. Let χpiq def
“ pi` 1qbi`1

0 2ipi`1qεβ2i´1

i for i ě 1.
Note that β, defined in (5), is equal to 3b0. Therefore,

χp1q “ 8b20

´ε0

2

¯3b0
ă ε0,

17

where the last step holds for all b0 ě 3. For any i ě 2,

χpiq

χpi´ 1q
“

ˆ

i` 1

i

˙

b022i
´ε0

2i

¯3b0p2
i´1
´2i´2

q

ď

ˆ

i` 1

i

˙

b022i
´ε0

2i

¯6b0

ď 2b0

´ε0

2i

¯6b0

ď ε0.

Therefore, ξpiq ď εi0.

APPENDIX B
PRELIMINARY LEMMAS FOR THE PROOF OF THEOREM IV.1

In order to compute bounds on the rate and expected local decodability and update efficiency, we must find the probability
that the length of an LZ78 codeword exceeds a certain amount. To help us with that, we have the following lemma:

Lemma B.1 ([54]). Let X be a finite alphabet and b be a positive integer. For any xb P X b, let `LZpxbq denote the length
of the LZ78 codeword for xb. For every k P Z`, we have

`LZpx
bq ď bHkpx

bq `
ckb log log b

log b
,

where Hkpx
bq denotes the kth order empirical entropy of the sequence xb, and c is an absolute constant.

The above lemma says that the length of the LZ78 codeword is close to the empirical entropy of the string. The following
lemma lets us conclude that if a sequence is typical, then the empirical entropy is close to the true entropy.

Lemma B.2. Fix any two probability mass functions p, q on X , and 0 ă ε ă 1{2. If |ppaq´ qpaq| ď εppaq for all a P X , then

|Hppq ´Hpqq| ď

ˆ

2`max
aPX

log
1

ppaq

˙

ε.

Proof. Consider

∆a – ppaq log ppaq ´ qpaq log qpaq

“ ppaq log ppaq ´ qpaq log ppaq ` qpaq log ppaq ´ qpaq log qpaq

“ pppaq ´ qpaqq log ppaq ´ qpaq log
qpaq

ppaq

However,

|Hppq ´Hpqq| ď
ÿ

a

|∆a|

ď
ÿ

a

ˆ

|ppaq ´ qpaq| log
1

ppaq
` qpaq

ˇ

ˇ

ˇ

ˇ

log
qpaq

ppaq

ˇ

ˇ

ˇ

ˇ

˙

ď εmax
a

log
1

ppaq
` log

1

1´ ε
.

For ε ă 1{2, we have log 1
1´ε ď 2ε. Using this in the above completes the proof.

APPENDIX C
FIXED V/S VARIABLE-LENGTH COMPRESSION

We briefly show how to achieve zero-error data compression and still achieve the performance stated in Theorems III.2 and
III.3. This is obtained by using a variable length code instead of a fixed-length code.

Definition C.1 (Variable-length compression). An pn,Rq variable-length compression scheme is a pair of maps pENC,DECq
consisting of
‚ an encoder ENC : Xn Ñ t0, 1u˚, and
‚ a decoder DEC : t0, 1u˚ Ñ Xn satisfying

DECpENCpXnqq “ Xn, @Xn P Xn

18

For any Y l P t0, 1u˚, let `pY lq denote the length of the sequence Y l. The quantity R is the rate of the code, and is defined
to be

R
def
“

1

n
Er`pENCpXnqqs

where the averaging is over the randomness in the source.

It is generally desired for a variable-length source code be prefix free: For every distinct pair of inputs Xn, Y n P Xn, the
codeword ENCpXnq must not be a prefix of ENCpY nq.

1) Converting a fixed-length compressor to a prefix-free variable-length compressor: Given any pn,Rq fixed-length com-
pression scheme pENCfix,DECfixq with a probability of error Pe “ op1q, it is easy to construct a prefix-free pn,R ` op1qq
variable-length compressor pENCvar,DECvarq. The following is one-such construction:

ENCvarpX
nq

def
“

#

p0,ENCfixpX
nqq if DECfixpENCfixpX

nqq “ Xn

p1, Xnq otherwise.

Clearly, the compressor is prefix free. The rate of pENCvar,DECvarq is equal to

Rvar “ 1{n`Rˆ p1´ Peq ` log |X | ˆ Pe
“ R` op1q.

For all s ě 1, the local decodability of the new variable-length scheme dpsq, dwcpsq is at most 1 more than that of the original
fixed-length scheme, and upsq, uwcp1q can increase by at most 2.

Due to the above transformation, we have devoted most of our attention to constructing fixed-length compression schemes.

REFERENCES

[1] S. Vatedka and A. Tchamkerten, “Local decoding and update of compressed data,” in Proceedings of the 2019 IEEE International Symposium on
Information Theory (ISIT), Paris, France, 2019.

[2] D. Pavlichin, T. Weissman, and G. Mably, “The quest to save genomics: Unless researchers solve the looming data compression problem, biomedical
science could stagnate,” IEEE Spectrum, vol. 55, no. 9, pp. 27–31, 2018.

[3] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges, techniques and technologies: A survey on big data,” Information sciences, vol.
275, pp. 314–347, 2014.

[4] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U. Khan, “The rise of “big data” on cloud computing: Review and open research
issues,” Information systems, vol. 47, pp. 98–115, 2015.

[5] M. P. Ball, J. V. Thakuria, A. W. Zaranek, T. Clegg, A. M. Rosenbaum, X. Wu, M. Angrist, J. Bhak, J. Bobe, M. J. Callow et al., “A public resource
facilitating clinical use of genomes,” Proceedings of the National Academy of Sciences, vol. 109, no. 30, pp. 11 920–11 927, 2012.

[6] U. consortium et al., “The uk10k project identifies rare variants in health and disease,” Nature, vol. 526, no. 7571, p. 82, 2015.
[7] J. M. Gaziano, J. Concato, M. Brophy, L. Fiore, S. Pyarajan, J. Breeling, S. Whitbourne, J. Deen, C. Shannon, D. Humphries et al., “Million veteran

program: a mega-biobank to study genetic influences on health and disease,” Journal of clinical epidemiology, vol. 70, pp. 214–223, 2016.
[8] E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and G. P. Nolan, “Computational solutions to large-scale data management and analysis,” Nature

reviews genetics, vol. 11, no. 9, p. 647, 2010.
[9] M. Vivien, “The big challenges of big data,” Nature, vol. 498, p. 255, June 2013.

[10] Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M. J. Efron, R. Iyer, M. C. Schatz, S. Sinha, and G. E. Robinson, “Big data: astronomical
or genomical?” PLoS biology, vol. 13, no. 7, p. e1002195, 2015.

[11] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,” IEEE Transactions on Information Theory, vol. 23, no. 3, pp. 337–343,
1977.

[12] ——, “Compression of individual sequences via variable-rate coding,” IEEE Transactions on Information Theory, vol. 24, no. 5, pp. 530–536, 1978.
[13] M. C. Brandon, D. C. Wallace, and P. Baldi, “Data structures and compression algorithms for genomic sequence data,” Bioinformatics, vol. 25, no. 14,

pp. 1731–1738, 2009.
[14] S. Deorowicz and S. Grabowski, “Robust relative compression of genomes with random access,” Bioinformatics, vol. 27, no. 21, pp. 2979–2986, 2011.
[15] A. J. Cox, M. J. Bauer, T. Jakobi, and G. Rosone, “Large-scale compression of genomic sequence databases with the burrows–wheeler transform,”

Bioinformatics, vol. 28, no. 11, pp. 1415–1419, 2012.
[16] S. Deorowicz, A. Danek, and S. Grabowski, “Genome compression: a novel approach for large collections,” Bioinformatics, vol. 29, no. 20, pp. 2572–2578,

2013.
[17] K. Tatwawadi, M. Hernaez, I. Ochoa, and T. Weissman, “GTRAC: Fast retrieval from compressed collections of genomic variants,” Bioinformatics,

vol. 32, no. 17, pp. i479–i486, 2016.
[18] M. Patrascu, “Succincter,” in 2008 49th Annual IEEE Symposium on Foundations of Computer Science. IEEE, 2008, pp. 305–313.
[19] Y. Dodis, M. Patrascu, and M. Thorup, “Changing base without losing space,” in Proceedings of the forty-second ACM symposium on Theory of

computing. ACM, 2010, pp. 593–602.
[20] J. I. Munro and Y. Nekrich, “Compressed data structures for dynamic sequences,” in Algorithms-ESA 2015. Springer, 2015, pp. 891–902.
[21] R. Raman and S. S. Rao, “Succinct dynamic dictionaries and trees,” in International Colloquium on Automata, Languages, and Programming. Springer,

2003, pp. 357–368.
[22] V. Chandar, D. Shah, and G. W. Wornell, “A locally encodable and decodable compressed data structure,” in Proceedings of the 47th Annual Allerton

Conference on Communication, Control, and Computing. IEEE, 2009, pp. 613–619.
[23] V. B. Chandar, “Sparse graph codes for compression, sensing and secrecy,” Ph.D. dissertation, MIT, 2010.
[24] A. Dutta, R. Levi, D. Ron, and R. Rubinfeld, “A simple online competitive adaptation of lempel-ziv compression with efficient random access support,”

in Proceedings of the Data Compression Conference (DCC). IEEE, 2013, pp. 113–122.
[25] P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and O. Weimann, “Random access to grammar-compressed strings,” in Proceedings of the

twenty-second annual ACM-SIAM symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 2011, pp. 373–389.
[26] E. Viola, O. Weinstein, and H. Yu, “How to store a random walk,” arXiv preprint arXiv:1907.1087, 2019.
[27] K. Sadakane and R. Grossi, “Squeezing succinct data structures into entropy bounds,” in Proceedings of the seventeenth annual ACM-SIAM symposium

on Discrete algorithm. Society for Industrial and Applied Mathematics, 2006, pp. 1230–1239.

19

[28] R. González and G. Navarro, “Statistical encoding of succinct data structures,” in Annual Symposium on Combinatorial Pattern Matching. Springer,
2006, pp. 294–305.

[29] P. Ferragina and R. Venturini, “A simple storage scheme for strings achieving entropy bounds,” in Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, 2007, pp. 690–696.

[30] S. Kreft and G. Navarro, “LZ77-like compression with fast random access,” in 2010 Data Compression Conference. IEEE, 2010, pp. 239–248.
[31] V. Mäkinen and G. Navarro, “Dynamic entropy-compressed sequences and full-text indexes,” in Annual Symposium on Combinatorial Pattern Matching.

Springer, 2006, pp. 306–317.
[32] J. Jansson, K. Sadakane, and W.-K. Sung, “Cram: Compressed random access memory,” in International Colloquium on Automata, Languages, and

Programming. Springer, 2012, pp. 510–521.
[33] R. Grossi, R. Raman, S. S. Rao, and R. Venturini, “Dynamic compressed strings with random access,” in International Colloquium on Automata,

Languages, and Programming. Springer, 2013, pp. 504–515.
[34] G. Navarro and Y. Nekrich, “Optimal dynamic sequence representations,” SIAM Journal on Computing, vol. 43, no. 5, pp. 1781–1806, 2014.
[35] P. K. Nicholson, V. Raman, and S. S. Rao, “A survey of data structures in the bitprobe model,” in Space-Efficient Data Structures, Streams, and

Algorithms. Springer, 2013, pp. 303–318.
[36] H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and S. Venkatesh, “Are bitvectors optimal?” SIAM Journal on Computing, vol. 31, no. 6, pp. 1723–1744,

2002.
[37] M. Lewenstein, J. I. Munro, P. K. Nicholson, and V. Raman, “Improved explicit data structures in the bitprobe model,” in European Symposium on

Algorithms. Springer, 2014, pp. 630–641.
[38] M. Garg and J. Radhakrishnan, “Set membership with a few bit probes,” in Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete

algorithms. Society for Industrial and Applied Mathematics, 2015, pp. 776–784.
[39] ——, “Set Membership with Non-Adaptive Bit Probes,” in 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017), ser. Leibniz

International Proceedings in Informatics (LIPIcs), H. Vollmer and B. Vallee, Eds., vol. 66. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2017.

[40] A. Mazumdar, V. Chandar, and G. W. Wornell, “Local recovery in data compression for general sources,” in Proceedings of the 2015 IEEE International
Symposium on Information Theory (ISIT). IEEE, 2015, pp. 2984–2988.

[41] K. Tatwawadi, S. Bidokhti, and T. Weissman, “On universal compression with constant random access,” in Proceedings of the 2018 IEEE International
Symposium on Information Theory, 2018, pp. 891–895.

[42] A. Makhdoumi, S.-L. Huang, M. Médard, and Y. Polyanskiy, “On locally decodable source coding,” in Proceedings of the 2015 IEEE International
Conference on Communications (ICC). IEEE, 2015, pp. 4394–4399.

[43] A. Pananjady and T. A. Courtade, “The effect of local decodability constraints on variable-length compression,” IEEE Transactions on Information
Theory, vol. 64, no. 4, pp. 2593–2608, 2018.

[44] A. Montanari and E. Mossel, “Smooth compression, Gallager bound and nonlinear sparse-graph codes,” in Proceedings of the 2008 IEEE International
Symposium on Information Theory. IEEE, 2008, pp. 2474–2478.

[45] L. R. Varshney, J. Kusuma, and V. K. Goyal, “On palimpsests in neural memory: An information theory viewpoint,” IEEE Transactions on Molecular,
Biological and Multi-Scale Communications, vol. 2, no. 2, pp. 143–153, 2016.

[46] ——, “Malleable coding for updatable cloud caching,” IEEE Transactions on Communications, vol. 64, no. 12, pp. 4946–4955, 2016.
[47] A. Mazumdar and S. Pal, “Semisupervised clustering, AND-queries and locally encodable source coding,” in Advances in Neural Information Processing

Systems, 2017, pp. 6489–6499.
[48] S. Yekhanin et al., “Locally decodable codes,” Foundations and Trends R© in Theoretical Computer Science, vol. 6, no. 3, pp. 139–255, 2012.
[49] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of codeword symbols,” IEEE Transactions on Information theory, vol. 58, no. 11,

pp. 6925–6934, 2012.
[50] I. Tamo and A. Barg, “A family of optimal locally recoverable codes,” IEEE Transactions on Information Theory, vol. 60, no. 8, pp. 4661–4676, 2014.
[51] V. R. Cadambe and A. Mazumdar, “Bounds on the size of locally recoverable codes,” IEEE transactions on information theory, vol. 61, no. 11, pp.

5787–5794, 2015.
[52] A. Mazumdar, V. Chandar, and G. W. Wornell, “Update-efficiency and local repairability limits for capacity approaching codes,” IEEE Journal on

Selected Areas in Communications, vol. 32, no. 5, pp. 976–988, 2014.
[53] I. Tamo, A. Barg, and A. Frolov, “Bounds on the parameters of locally recoverable codes,” IEEE Transactions on information theory, vol. 62, no. 6, pp.

3070–3083, 2016.
[54] T. M. Cover and J. A. Thomas, Elements of Information Theory. John Wiley & Sons, 2012.
[55] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge university press, 2011.

	Introduction
	Querying and updating compressed data
	Queries
	Updates

	Main results
	Proof of Theorem III.2
	Intuition
	Compression scheme
	Level =0
	Levels 1

	Local decoding
	Local updating
	Connections with Patrascu's compressed data structure patrascu2008succincter
	Bounds on d(1) and u(1)
	Proof of Theorem III.2 assuming that pX is known
	Rate of the code
	Average local decodability and update efficiency
	Computational complexity

	Variable-length source code with zero error
	Universal compression using Lempel-Ziv as a subcode

	Proof of Theorem III.3
	Encoding
	Local decoding of a subblock
	Update algorithm

	Proof of Theorem III.3

	Concluding remarks
	Appendix A: Preliminary lemmas for the proof of Theorem III.2
	Appendix B: Preliminary lemmas for the proof of Theorem IV.1
	Appendix C: Fixed v/s Variable-length compression
	Converting a fixed-length compressor to a prefix-free variable-length compressor

	References

