D. G. Lowe, Distinctive image features from scale-invariant keypoints, International journal of computer vision, vol.60, issue.2, pp.91-110, 2004.

M. Karpushin, G. Valenzise, and F. Dufaux, Keypoint detection in rgbd images based on an anisotropic scale space, IEEE Transactions on Multimedia, vol.18, issue.9, pp.1762-1771, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01348978

G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, Simultaneous localization and mapping: A survey of current trends in autonomous driving, IEEE Transactions on Intelligent Vehicles, vol.2, issue.3, pp.194-220, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01615897

A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollr, Panoptic segmentation, 2018.

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler et al., The cityscapes dataset for semantic urban scene understanding, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.3213-3223, 2016.

G. Niu, M. C. Du-plessis, T. Sakai, Y. Ma, and M. Sugiyama, Theoretical comparisons of positive-unlabeled learning against positive-negative learning, Advances in Neural Information Processing Systems, pp.1199-1207, 2016.

F. Chiaroni, M. Rahal, N. Hueber, and F. Dufaux, Learning with a generative adversarial network from a positive unlabeled dataset for image classification, IEEE International Conference on Image Processing, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01811008

X. Ma, Y. Wang, M. E. Houle, S. Zhou, S. M. Erfani et al., Dimensionalitydriven learning with noisy labels, 2018.

F. Chiaroni, M. C. Rahal, N. Hueber, and F. Dufaux, Hallucinating a Cleanly Labeled Augmented Dataset from a Noisy Labeled Dataset Using GANs, IEEE International Conference on Image Processing, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02054836

M. E. Houle, Local intrinsic dimensionality I: an extreme-value-theoretic foundation for similarity applications, International Conference on Similarity Search and Applications, pp.64-79, 2017.

S. Jain, M. White, and P. Radivojac, Estimating the class prior and posterior from noisy positives and unlabeled data, Advances in Neural Information Processing Systems, vol.29, pp.2693-2701, 2016.

Y. , Uncertainty in Deep Learning, 2016.

H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. R. Bradski, Self-supervised monocular road detection in desert terrain, Robotics: science and systems, vol.38, 2006.

L. Jing and Y. Tian, Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey, 2019.

Y. Zhong, Y. Dai, and H. Li, Self-supervised learning for stereo matching with self-improving ability, 2017.

R. Garg, V. K. Bg, G. Carneiro, and I. Reid, Unsupervised cnn for single view depth estimation: Geometry to the rescue, European Conference on Computer Vision, pp.740-756, 2016.

J. Dequaire, P. Ondruska, D. Rao, D. Wang, and I. Posner, Deep tracking in the wild: End-to-end tracking using recurrent neural networks, The International Journal of Robotics Research, p.0278364917710543, 2017.

A. Bewley, V. Guizilini, F. Ramos, and B. Upcroft, Online self-supervised multi-instance segmentation of dynamic objects, Robotics and Automation (ICRA), pp.1296-1303, 2014.

R. Hadsell, P. Sermanet, J. Ben, A. Erkan, M. Scoffier et al., Learning long-range vision for autonomous off-road driving, Journal of Field Robotics, vol.26, issue.2, pp.120-144, 2009.

A. Geiger, P. Lenz, and R. Urtasun, Are we ready for autonomous driving? the kitti vision benchmark suite, 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.3354-3361, 2012.

V. Guizilini and F. Ramos, Online self-supervised segmentation of dynamic objects, Robotics and Automation (ICRA), 2013 IEEE International Conference on, pp.4720-4727, 2013.

D. Pathak, R. Girshick, P. Dollr, T. Darrell, and B. Hariharan, Learning features by watching objects move, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.2701-2710, 2017.

P. Ondruska and I. Posner, Deep tracking: Seeing beyond seeing using recurrent neural networks, 2016.

C. G. Harris and M. Stephens, A combined corner and edge detector, Alvey vision conference, vol.15, pp.10-5244, 1988.

H. Bay, T. Tuytelaars, and L. Van-gool, Surf: Speeded up robust features, pp.404-417, 2006.

E. Rublee, V. Rabaud, K. Konolige, and G. R. Bradski, Orb: An efficient alternative to sift or surf, ICCV, vol.11, p.2, 2011.

Y. Zhong, Intrinsic shape signatures: A shape descriptor for 3d object recognition, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp.689-696, 2009.

G. Farnebck, Two-frame motion estimation based on polynomial expansion, pp.363-370, 2003.

B. D. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision, 1981.

M. Menze and A. Geiger, Object scene flow for autonomous vehicles, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.3061-3070, 2015.

K. Prazdny, Egomotion and relative depth map from optical flow, Biological cybernetics, vol.36, issue.2, pp.87-102, 1980.

M. A. Fischler and R. C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, vol.24, issue.6, pp.381-395, 1981.

D. H. Ballard, Generalizing the hough transform to detect arbitrary shapes, Pattern recognition, vol.13, issue.2, pp.111-122, 1981.

D. Scaramuzza and F. Fraundorfer, Visual odometry, IEEE robotics & automation magazine, vol.18, issue.4, pp.80-92, 2011.

A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, Monoslam: Real-time single camera slam, IEEE Transactions on Pattern Analysis & Machine Intelligence, issue.6, pp.1052-1067, 2007.

R. F. Salas-moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and A. J. Davison, Slam++: Simultaneous localisation and mapping at the level of objects, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

M. Teichmann, M. Weber, M. Zoellner, R. Cipolla, and R. Urtasun, MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving, 2016.

S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards real-time object detection with region proposal networks, Advances in neural information processing systems, pp.91-99, 2015.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified, real-time object detection, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.779-788, 2016.

V. Badrinarayanan, A. Kendall, and R. Cipolla, Segnet: A deep convolutional encoder-decoder architecture for image segmentation, IEEE transactions on pattern analysis and machine intelligence, vol.39, pp.2481-2495, 2017.

K. He, G. Gkioxari, P. Dollar, and R. Girshick, Mask r-cnn, The IEEE International Conference on Computer Vision (ICCV), 2017.

A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas et al., Flownet: Learning optical flow with convolutional networks, The IEEE International Conference on Computer Vision (ICCV), 2015.

F. Liu, C. Shen, G. Lin, and I. Reid, Learning depth from single monocular images using deep convolutional neural fields, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.38, issue.10, pp.2024-2039, 2016.

A. Milan, S. H. Rezatofighi, A. Dick, I. Reid, and K. Schindler, Online multi-target tracking using recurrent neural networks, Thirty-First AAAI Conference on Artificial Intelligence, 2017.

M. Caron, P. Bojanowski, A. Joulin, and M. Douze, Deep clustering for unsupervised learning of visual features, Proceedings of the European Conference on Computer Vision (ECCV), pp.132-149, 2018.

T. K. Moon, The expectation-maximization algorithm, IEEE Signal processing magazine, vol.13, issue.6, pp.47-60, 1996.

C. Godard, O. M. Aodha, and G. Brostow, Digging into self-supervised monocular depth estimation, 2018.

A. Kendall, V. Badrinarayanan, and R. Cipolla, Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding, 2015.

D. Lieb, A. Lookingbill, and S. Thrun, Adaptive Road Following using Self-Supervised Learning and Reverse Optical Flow, Robotics: science and systems, pp.273-280, 2005.

S. Zhou, J. Gong, G. Xiong, H. Chen, and K. Iagnemma, Road detection using support vector machine based on online learning and evaluation, 2010 IEEE Intelligent Vehicles Symposium, pp.256-261, 2010.

H. Roncancio, M. Becker, A. Broggi, and S. Cattani, Traversability analysis using terrain mapping and onlinetrained terrain type classifier, 2014 IEEE Intelligent Vehicles Symposium Proceedings. IEEE, pp.1239-1244, 2014.

Z. Kalal, K. Mikolajczyk, and J. Matas, Tracking-learning-detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, issue.7, pp.1409-1422, 2012.

M. Fathollahi and R. Kasturi, Autonomous driving challenge: To Infer the property of a dynamic object based on its motion pattern using recurrent neural network, 2016.

T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, Unsupervised learning of depth and ego-motion from video, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.1851-1858, 2017.

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins et al., Overcoming catastrophic forgetting in neural networks, Proceedings of the national academy of sciences, p.201611835, 2017.

F. Chabot, M. Chaouch, J. Rabarisoa, C. Teuliere, and T. Chateau, Deep manta: A coarse-to-fine many-task SUBMITTED -IEEE SIGNAL PROCESSING MAGAZINE -SPECIAL ISSUE ON AUTONOMOUS DRIVING 20 network for joint 2d and 3d vehicle analysis from monocular image, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.