V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, All-optical control of light on a silicon chip, Nature, vol.431, pp.1081-1084, 2004.

M. Asghari and A. V. Krishnamoorthy, Silicon photonics: Energy-efficient communication, Nat. Photonics, vol.5, pp.268-270, 2011.

D. Liang and J. Bowers, Recent progress in lasers on silicon, Nat. Photonics, vol.4, pp.511-517, 2010.

Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita, Silicon photonics for next generation system integration platform, IEEE Commun. Mag, vol.51, pp.72-77, 2013.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang et al., Electrically pumped continuouswave III-V quantum dot lasers on silicon, Nat. Photonics, vol.10, p.307, 2016.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, Development of quantum dot lasers for data-com and silicon photonics applications, IEEE J. Sel. Top. Quantum Electron, vol.23, pp.1-7, 2017.

G. Duan, C. Jany, A. L. Liepvre, A. Accard, M. Lamponi et al.,

D. Messaoudene, S. Bordel, G. Menezo, S. Valicourt, G. Keyvaninia et al., Hybrid III-V on silicon lasers for photonic integrated circuits on silicon, IEEE J. Sel. Top. Quantum Electron, vol.20, pp.158-170, 2014.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin et al., High efficiency low threshold current 1.3 ?m InAs quantum dot lasers on on-axis (001) GaP/Si, Appl. Phys. Lett, vol.111, p.122107, 2017.

J. Kwoen, B. Jang, J. Lee, T. Kageyama, K. Watanabe et al., All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001), Opt. Express, vol.26, pp.11568-11576, 2018.

J. Kwoen, B. Jang, K. Watanabe, and Y. Arakawa, High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001), Opt. Express, vol.27, pp.2681-2688, 2019.

Y. Zhou, J. Duan, H. Huang, X. Zhao, C. Cao et al., Intensity noise and pulse oscillations of an InAs/GaAs quantum dot laser on germanium, IEEE J. Sel. Top. Quantum Electron, vol.25, pp.1-10, 2019.

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard et al.,

. Bowers, Low threading dislocation density GaAs growth on on-axis GaP/Si (001), J. Appl. Phys, vol.122, p.225703, 2017.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu et al., Longwavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate, Nat. Photonics, vol.5, pp.416-419, 2011.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang et al., III-V/silicon photonics for on-chip and intra-chip optical interconnects, Laser Photonics Rev, vol.4, p.751, 2010.

T. Katsuaki, W. Katsuyuki, and Y. Arakawa, III-V/Si hybrid photonic devices by direct fusion bonding, Sci. Rep, vol.2, p.349, 2012.

C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, Highcoherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.2879-2884, 2014.

K. Schires, N. Girard, G. Baili, G. Duan, S. Gomez et al., Dynamics of hybrid III-V silicon semiconductor lasers for integrated photonics, IEEE J. Sel. Top. Quantum Electron, vol.22, pp.43-49, 2016.

D. J. Lockwood and L. Pavesi, Silicon Photonics II: Components and Integration, 2011.

D. Vermeulen, Y. D. Koninck, Y. Li, E. Lambert, W. Bogaerts et al., Reflectionless grating couplers for silicon-on-insulator photonic integrated circuits, Opt. Express, vol.20, p.22278, 2012.

Z. Zhang, H. Wang, N. Satyan, G. Rakuljic, C. T. Santis et al., Coherent and incoherent optical feedback sensitivity of high-coherence Si/III-V hybrid lasers, Optical Fiber Communication Conference (OFC), pp.4-7, 2019.

D. Huang, P. Pintus, and J. E. Bowers, Towards heterogeneous integration of optical isolators and circulators with lasers on silicon, Opt. Mater. Express, vol.8, pp.2471-2483, 2018.

Y. Zhang, Q. Du, C. Wang, T. Fakhrul, S. Liu et al., Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics, Optica, vol.6, pp.473-478, 2019.

G. Eisenstein and D. Bimberg, Green Photonics and Electronics, 2017.

D. O'brien, S. P. Hegarty, G. Huyet, J. G. Mcinerney, T. Kettler et al., Feedback sensitivity of 1.3 ?m InAs/GaAs quantum dot lasers, Electron. Lett, vol.39, p.1819, 2003.

F. Zubov, M. Maximov, E. Moiseev, A. Savelyev, Y. Shernyakov et al., Observation of zero linewidth enhancement factor at excited state band in quantum dot laser, Electron. Lett, vol.51, pp.1686-1688, 2015.

D. Inoue, D. Jung, J. Norman, Y. Wan, N. Nishiyama et al., Directly modulated 1.3 ?m quantum dot lasers epitaxially grown on silicon, Opt. Express, vol.26, pp.7022-7033, 2018.

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman et al., 1.3-?m reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon, IEEE Photonics Technol. Lett, vol.31, pp.345-348, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01561703

K. Lüdge, Nonlinear Laser Dynamics: From Quantum Dots to Cryptography, 2012.

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara et al., Isolator free optical I/O core transmitter by using quantum dot laser, 2015 IEEE 12th International Conference on Group IV Photonics (GFP), pp.177-178, 2015.

J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman et al.,

. Grillot, Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor, Appl. Phys. Lett, vol.112, p.251111, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02305802

M. Buffolo, F. Samparisi, C. Santi, D. Jung, J. Norman et al.,

G. Herrick, E. Meneghesso, M. Zanoni, and . Meneghini, Physical origin of the optical degradation of InAs quantum dot lasers, IEEE J. Quantum Electron, vol.55, pp.1-7, 2019.

M. Buffolo, F. Samparisi, L. Rovere, C. Santi, D. Jung et al.,

R. W. Bowers, G. Herrick, E. Meneghesso, M. Zanoni, and . Meneghini, Investigation of current-driven degradation of 1.3 ?m quantum-dot lasers epitaxially grown on silicon, IEEE J. Sel. Top. Quantum Electron, vol.26, pp.1-8, 2020.

D. G. Deppe, H. Huang, and O. B. Shchekin, Modulation characteristics of quantum-dot lasers: The influence of p-type doping and the electronic density of states on obtaining high speed, IEEE J. Quantum Electron, vol.38, pp.1587-1593, 2002.

I. C. Sandall, P. M. Smowton, C. L. Walker, T. Badcock, D. J. Mowbray et al.,

M. Liu and . Hopkinson, The effect of p doping in InAs quantum dot lasers, Appl. Phys. Lett, vol.88, p.111113, 2006.

G. Ozgur, A. Demir, and D. G. Deppe, Threshold temperature dependence of a quantum-dot laser diode with and without p-doping, IEEE J. Quantum Electron, vol.45, pp.1265-1272, 2009.

O. Shchekin, J. Ahn, and D. Deppe, High temperature performance of selforganised quantum dot laser with stacked p-doped active region, Electron. Lett, vol.38, issue.1, pp.712-713, 2002.

K. Lüdge and E. Schöll, Nonlinear dynamics of doped semiconductor quantum dot lasers, Eur. Phys. J. D, vol.58, pp.167-174, 2010.

M. T. Crowley, N. A. Naderi, H. Su, F. Grillot, and L. F. Lester, GaAs-based quantum dot lasers, Advances in Semiconductor Lasers, pp.371-417, 2012.

J. C. Norman, Z. Zhang, D. Jung, C. Shang, M. Kennedy et al.,

A. C. Herrick, J. E. Gossard, and . Bowers, The importance of p-doping for quantum dot laser on silicon performance, IEEE J. Quantum Electron, vol.55, pp.1-11, 2019.

Y. Zhou, C. Zhou, C. Cao, J. Du, Q. Gong et al., Relative intensity noise of InAs quantum dot lasers epitaxially grown on Ge, Opt. Express, vol.25, pp.28817-28824, 2017.

A. Y. Liu, T. Komljenovic, M. L. Davenport, A. C. Gossard, and J. E. Bowers, Reflection sensitivity of 1.3 ?m quantum dot lasers epitaxially grown on silicon, Opt. Express, vol.25, pp.9535-9543, 2017.

J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos, 2010.

D. Lenstra, B. Verbeek, and A. D. Boef, Coherence collapse in single-mode semiconductor lasers due to optical feedback, IEEE J. Quantum Electron, vol.21, pp.674-679, 1985.

F. Grillot, B. Thedrez, O. Gauthier-lafaye, M. F. Martineau, V. Voiriot et al., Coherence collapse threshold of 1.3 ?m semiconductor DFB lasers, IEEE Photonics Technol. Lett, vol.15, pp.9-11, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00084877

F. Grillot, G. H. Duan, and B. Thedrez, Feedback sensitivity and coherence collapse threshold of semiconductor DFB lasers with complex structures, IEEE J. Quantum Electron, vol.40, p.231, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00084879

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Optical Engineering, 1995.

M. Osinski and J. Buus, Linewidth broadening factor in semiconductor lasers-An overview, IEEE J. Quantum Electron, vol.23, pp.9-29, 1987.

Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow et al., Effects of modulation p doping in InAs quantum dot lasers on silicon, Appl. Phys. Lett, vol.113, p.61105, 2018.

Z. Zhang, D. Jung, J. Norman, W. W. Chow, and J. E. Bowers, Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications, IEEE J. Sel. Top. Quant. Electron, vol.25, pp.1-9, 2019.

G. Liu, X. Jin, and S. L. Chuang, Measurement of linewidth enhancement factor of semiconductor lasers using an injection-locking technique, IEEE Photonics Technol. Lett, vol.13, p.430, 2001.

R. Tkach and A. Chraplyvy, Regimes of feedback effects in 1.5-?m distributed feedback lasers, J. Lightwave Technol, vol.4, pp.1655-1661, 1986.

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, Perspective: The future of quantum dot photonic integrated circuits, APL Photonics, vol.3, p.30901, 2018.

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang et al., Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon, J. Opt. Soc. Am. B, vol.35, pp.2780-2787, 2018.

J. Wang and K. Petermann, Noise analysis of semiconductor lasers within the coherence collapse regime, IEEE J. Quantum Electron, vol.27, pp.3-9, 1991.

T. Heil, I. Fischer, W. Elsäßer, and A. Gavrielides, Dynamics of semiconductor lasers subject to delayed optical feedback: The short cavity regime, Phys. Rev. Lett, vol.87, p.243901, 2001.