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Abstract. Research on (Decentralized) Multi-Client Functional Encryption (or (D)MCFE) is
very active, with interesting constructions, especially for the class of inner products. However, the
security notions have been evolving over the time. While the target of the adversary in distinguishing
ciphertexts is clear, legitimate scenarios that do not consist of trivial attacks on the functionality
are less obvious. In this paper, we wonder whether only trivial attacks are excluded from previous
security games. And, unfortunately, this was not the case.

We then propose a stronger security notion, with a large definition of admissible attacks, and
prove it is optimal: any extension of the set of admissible attacks is actually a trivial attack on
the functionality, and not against the specific scheme. In addition, we show that all the previous
constructions are insecure w.r.t. this new security notion. Eventually, we propose new DMCFE
schemes for the class of inner products that provide the new features and achieve this stronger
security notion.

Keywords: Functional Encryption, Corruptions, Security Notions

1 Introduction

Decentralized Multi-Client Functional Encryption. Multi-Input Functional Encryp-
tion (MIFE) and Multi-Client Functional Encryption (MCFE), together with their decentralized
variants [GGG+14, GKL+13, CDG+18a], have been receiving a strong interest from the crypto-
graphic community. They generalize the nice functional encryption primitive [SW05, BSW11]
where the single input x, in the encryption procedure, is split into an input vector (x1, . . . , xn),
and the components can be encrypted independently, possibly by different senders/clients in
MCFE. An index i for each component, and a (typically time-based) tag tag for MCFE, are used
for every encryption ci = Enc(i, tag, xi). From the n encrypted components under the same tag
tag, anyone owning a functional decryption key dkf , for the n-ary function f , can compute
f(x1, . . . , xn) but nothing else about the individual xi’s. In this paper, we focus on a standard
and optimal security model for the most general form of MCFE, namely decentralized MCFE,
where the generation of functional decryption keys is also split between multiple clients.

Previous Corruption Model for (D)MCFE. In previous (D)MCFE, encryption was claimed
to require a private key eki per client, for each component ci, because of deterministic encryption.
Then, some of these keys might get corrupted. In DMCFE, where multiple clients contribute to
generate the decryption functional keys and also own secret keys ski, and some can get corrupted.
Therefore, there exists potential corruption of two categories of keys regarding DMCFE that
need to be dealt with: a private encryption key eki for encryption and a secret key ski for
generating functional keys. The proposed corruption model in the work on DMCFE by Chotard
et al. [CDG+18a] is: when an adversary corrupts a client i, it receives both (ski, eki). However,
this does not reflect the real-life situation. In fact, the encryption keys eki’s and the secret keys
ski’s can have different levels of protection (ski looks more critical than eki) and can be stored
on different devices. This is thus a strong restriction to get both keys in case of corruption.
Actually, this corruption model was employed in the previous DMCFE constructions for inner
products fy(x) = ⟨x,y⟩, as the numbers of ski’s and eki’s are equal, and in most of them
particularly, ski is either included in eki, e.g. [CDG+18a, CDG+18b, LT19], or they are the
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same, e.g. [ABKW19, ABG19, AGT21b]3. But this might not always be the case. Specifically,
for quadratic functions computing fA(x) = x⊤Ax as considered in [AGT21a, AGT22], one could
have n2 secret keys skj for the square matrix A and n encryption keys eki only for the input
vector x. Hence, the holders of skj ’s and eki’s might differ.

Previous Notions of Admissible Attacks against (D)MCFE. Generally, studying an
advanced cryptographic primitive involves formalizing the ubiquitous perception of trivial attacks
when devising its security notion, those that exploit only the functionality of the primitive
to trivially break any specific constructions. A standard example is the case of identity-based
encryption [Sha84, Coc01, BF01, BGH07], of which the widely agreed security notion forbids the
adversary to obtain the secret key of any identity that could decrypt the challenge ciphertext.
In our case of (D)MCFE, everything becomes much more complicated due to the computational
aspect of the function class and the corruption in multi-user setting. Following the introduction
of (D)MCFE in the seminal paper [CDG+18a], to the best of our knowledge, all follow-up
studies on (D)MCFE, for instance [CDG+18b, ABKW19, ABG19, LT19, CDSG+20, AGT21b],
administered an admissibility condition in order to prohibit trivial attacks, and restricted
particularly adversaries to asking the challenge components x∗

0[i] = x∗
1[i] in case of a corrupted

i. Attacks that satisfy the admissibility condition are called admissible attacks. Nonetheless,
there was no satisfactory justification for such a restriction, except that all the constructions
used a deterministic encryption, and so the corruption of eki could allow to re-encrypt x∗

0[i]
and compare with the challenge ciphertext. This was thus also the similar argument to support
private encryption keys. Since then, relaxing the foregoing constraint was widely believed to be
insurmountable for constructing (D)MCFE schemes and proving their security.

An Improved Security Model for DMCFE. Since previous security notions of DMCFE
turn out unstable, the main goal of this paper is to propose a fair and optimal security model.
Separating Corruptions of eki and ski. Our first step is thus to separate the corruption of
skj from that of eki, i.e. the adversary must specify which type of keys it wants to corrupt. This
gives more flexibility to the adversary. However, its goal remains the same: distinguish between
the encryption of x∗

0 and x∗
1 in the challenge ciphertext. We notice that this new corruption

model captures the previous “both-or-nothing” model in previous works and any scheme that
is secure in this new fine-grained model will also be secure in the old one. A very recent work
by Agrawal et al. [AGT21b] also defined a security model with similar fine-grained corruption,
though as mentioned earlier (see footnote 3) their subsequent DMCFE scheme for inner products
has ski = eki for every i and by corrupting one an adversary will obtain both keys.

Refining Admissibity for A Stronger Security. Our next objective consists in challeng-
ing the belief from previous admissibility conditions and relaxing the restriction x∗

0[i] = x∗
1[i]

in case of a corrupted i. A more relaxed admissiblity means more attacks will be considered,
leading to a stronger security notion. To summarize, we revise the security model for (D)MCFE
and

1. We provide a new security model for DMCFE under separated corruption of keys and
less restrictive admissibility condition. Our security model covers the security model in
all previous works, in the sense that being secure in the former implies being secure in
the latter.

In Section 3.1, we give the intuition of our new formulation for admissibility condition. This new
definition will require probabilistic encryption, which exclude the need of private encryption
keys. Our security model will thus also consider public-key encryption, as some security still
holds when all the encryption keys eki are corrupted. Note however this might make sense for

3 The work of [AGT21b] constructs function-hiding dynamic decentralized FE, which directly yields a DMCFE
with a stronger property of function secrecy. Even though their proposed security model captures separated
corruption of eki and ski, implying they are different, their dynamic decentralized FE construction uses the
same key for both and so does the resulting DMCFE, i.e. ski = eki for every i.
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limited classes of functions only and becomes completely meaningless when both (eki, ski) can
be corrupted at once.

Optimality. At the core of our new security model is a more relaxed admissibility condition.
Up to this point one may well wonder if there is still room to relax our condition, in the same way
we have done to the admissibility condition put forth since the birth of DMCFE in [CDG+18a].
Our goal is to analyze this question in a rigorous manner. This turns out to be notoriously hard
because we aim to settle this infamous problem with satisfactory justifications whenever a new
condition is introduced. Intuitively, since all prior works did not elaborate formally whether an
admissibility condition must be respected or it is just optional, we have to start from scratch to
formalize how “indispensable” a condition is. We thus address this optimality question and this
leads to our second contribution:

2. We provide a new framework to prove the optimality of our new notion of admissible
attacks. More formally, this allows us to show that any non-admissible attack would
actually break any efficient construction for the functionality. This proves that we only
exclude attacks that are at the functionality level and not at the scheme level.

We believe that the conceptual message from our methodology is one main contribution of this
paper. We refer to Section 3.3 for a detailed explanation of our modeling choices as well as the
encountered problems.

Impact and Feasibility. While we have shown our security notion to be optimal w.r.t. the
functionality for a class of functions, there are two remaining questions, with respect to this new
admissibility notion: are the previous constructions secure? Can we construct concrete schemes
for non-trivial functionalities?

First, we can show that the class of inner products is a non-trivial class. Furthermore, it
has been widely studied, with several candidates: the DDH-based MCFE for inner products
from [CDG+18a, ABG19, CDSG+20] cannot be proven secure in our model, due to the following
attack, which was artificially excluded in the previous security models. For any corrupted key eki,
it was required that x∗

0[i] = x∗
1[i], because of the deterministic encryption: an adversary corrupts

client 1 among n clients to get ek1, then queries the function y with y[1] = 0 and challenges
(x∗

0[i],x
∗
1[i])i∈[n] such that x∗

0[1] ̸= x∗
1[1] and ⟨x∗

0,y⟩ = ⟨x∗
1,y⟩. Then, the adversary encrypts x∗

1[1]
on their own using ek1. By comparing with the obtained ciphertext on x∗

b [1], such an adversary
can decide correctly on b. In addition to these DDH-based constructions, in a work by Libert
and Titiu [LT19], the authors proposed the first LWE-based MCFE in the standard model. The
ciphertext components of this scheme is somewhat randomized by some small Gaussian error,
but the above attack still works by choosing x∗

0[1] ̸= x∗
1[1] that are far from each other, then

deciding based on the norm of the two ciphertexts’ difference4. We note that the above attack
gives a byproduct that complements our first contribution

1-bis. Our security model is strictly stronger than the security model in almost all previous
works, in the sense that prior concrete schemes cannot be proven secure in ours.

Besides the theoretical part introducing and proving our optimal security notion for DMCFE, we
also propose new constructions in the DDH setting which meet the proposed level of security. This
requires a number of new technical ideas, in particular a technique for achieving admissibility via
revocation (in a different way than [ABP+17]) and using dual pairing vector spaces (DPVS) [OT10,
OT12a, OT12b], to build a probabilistic encryption scheme.

Roughly speaking, our new admissibility when translated for the particular cases of inner-
products introduces one condition that for all corrupted clients i, for eki, for all functional key
query y, it must hold that

(x∗
0[i]− x∗

1[i]) · y[i] = 0 . (1)

4 We use the metrics employed in the context of the LWE-based (D)MCFE in [LT19].
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Previous security models required x∗
0[i] = x∗

1[i], but we now have to deal with the case x∗
0[i] ̸= x∗

1[i]
and y[i] = 0 additionally. A necessary condition is that our encryption must be probabilistic
(otherwise, the attack described in the previous paragraph applies). However, that is not enough
because we want semantic security for the ciphertext component cti of x

∗
b [i] as well, where

b
$← {0, 1} is the challenge bit. When we view this problem under the lens of revocation systems,

similarities emerge: as soon as the special value 0 is set for y[i], we want to nullify the ability
for recovering information about x∗

b [i]. The foregoing fits well in the context of revocation.
Conveniently, the work by Agrawal et al. [ABP+17] solved the “dual” problem, namely using
IPFE to construct revocation systems, and along the way, the authors of [ABP+17] presented
a DDH-based IPFE that we can embed locally into the vectors in DPVS, components by
components. We leverage this idea to concoct DPVS-based DMCFE schemes for inner-product
functionality and achieve security under the condition (1). In the end, our third contribution is

3. We demonstrate the feasibility of our new security model by presenting DDH-based
DMCFE schemes for inner products over polynomially bounded ranges using pairings,
the first concrete scheme whose security holds against fine-grained corruptions and a less
restrictive admissiblity.

More high-level details are provided in Section 3.4.

2 Preliminaries

We write [n] to denote the set {1, 2, . . . , n} for an integer n. For any q ≥ 2, we let Zq denote
the ring of integers with addition and multiplication modulo q. For a prime q and an integer
N , we denote by GLN (Zq) the general linear group of degree N over Zq. We write vectors as
row-vectors, unless stated otherwise. For a vector x of dimension n, the notation x[i] indicates
the i-th coordinate of x, for i ∈ [n]. We will follow the implicit notation in [EHK+13] and use
JaK to denote ga in a cyclic group G of prime order q generated by g, given a ∈ Zq. This implicit
notation extends to matrices and vectors having entries in Zq. We use the shorthand ppt for
“probabilistic polynomial time”. In the security proofs, whenever we use an ordered sequence of
games (G0,G1, . . . ,Gi, . . . ,GL) indexed by i ∈ {0, 1, . . . , L}, we refer to the predecessor of Gj by
Gj−1, for j ∈ [L].

2.1 Hardness Assumptions

We state the assumptions needed for our constructions.

Definition 1. In a cyclic group G of prime order q, the Decisional Diffie-Hellman (DDH)
problem is to distinguish the distributions

D0 = {(J1K , JaK , JbK , JabK)} D1 = {(J1K , JaK , JbK , JcK)}.

for a, b, c
$← Zq. The DDH assumption in G assumes that no ppt adversary can decide the DDH

problem with non-negligible probability.

In the bilinear setting (G1,G2,Gt, g1, g2, gt, e, q), the Symmetric eXternal Diffie-Hellman
(SXDH) assumption makes the DDH assumption in both G1 and G2.

Definition 2. In the bilinear setting (G1,G2,Gt, g1, g2, gt, e, q), the Decisional Bilinear Diffie-
Hellman (DBDH) problem is to distinguish the distributions

D0 = {(JaK1 , JbK1 , JbK2 , JcK2 , JabcKt)} D1 = {(JaK1 , JbK1 , JbK2 , JcK2 , JrKt)}.

for a, b, c, r
$← Zq. The DBDH assumption in (G1,G2,Gt, g1, g2, gt, e, q) assumes that no ppt

adversary can decide the DBDH problem with non-negligible probability.
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2.2 Dual Pairing Vector Spaces

Our constructions rely on the Dual Pairing Vector Spaces (DPVS) framework in prime-order
bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q) and G1,G2,Gt are all written additively. The
DPVS technique dates back to the seminal work by Okamoto-Takashima [OT10, OT12a, OT12b]
aiming at adaptive security for ABE as well as IBE, together with the dual system methodology
introduced by Waters [Wat09]. In [LW10], the setting for dual systems is composite-order bilinear
groups. Continuing on this line of works, Chen et al. [CLL+13] used prime-order bilinear groups
under the SXDH assumption. Let us fix N ∈ N and consider GN

1 having N copies of G1. Any
x = J(x1, . . . , xN )K1 ∈ GN

1 is identified as the vector (x1, . . . , xN ) ∈ ZN
q . There is no ambiguity

because G1 is a cyclic group of prime order q. The 0-vector is 0 = J(0, . . . , 0)K1. The addition
of two vectors in GN

1 is defined by coordinate-wise addition. The scalar multiplication of a
vector is defined by t · x := Jt · (x1, . . . , xN )K1, where t ∈ Zq and x = J(x1, . . . , xN )K1. The
additive inverse of x ∈ GN

1 is defined to be −x := J(−x1, . . . ,−xN )K1. Viewing ZN
q as a vector

space of dimension N over Zq with the notions of bases, we can obtain naturally a similar
notion of bases for GN

1 . More specifically, any invertible matrix B ∈ GLN (Zq) identifies a basis
B of GN

1 , whose i-th row bi is
q
B(i)

y
1
, where B(i) is the i-th row of B. The canonical basis

A of GN
1 consists of a1 := J(1, 0 . . . , 0)K1 ,a2 := J(0, 1, 0 . . . , 0)K1 , . . . ,aN := J(0, . . . , 0, 1)K1. It

is straightforward that we can write B = B ·A for any basis B of GN
1 corresponding to an

invertible matrix B ∈ GLN (Zq), for the change of basis. We write x = (x1, . . . , xN )B to indicate

the representation of x in the basis B, i.e. x =
∑N

i=1 xi · bi. Given a basis B = (bi)i∈[N ] of

GN
1 , we define B∗ to be a basis of GN

2 by first defining B′ := (B-1)⊤ and the i-th row b∗
i

of B∗ is
q
B′(i)y

2
. It holds that B · (B′)⊤ = IN the identity matrix and bi × b∗

j = Jδi,jKt for
every i, j ∈ [N ], where δi,j = 1 if and only if i = j. Treating GN

2 similarly, we can furthermore
define a product of two vectors x = J(x1, . . . , xN )K1 ∈ GN

1 ,y = J(y1, . . . , yN )K2 ∈ GN
2 by

x × y :=
∏N

i=1 e(x[i],y[i]) = J⟨(x1, . . . , xN ), (y1, . . . , yN )⟩Kt. We call the pair (B,B∗) dual

orthogonal bases of (GN
1 ,GN

2 ). If B is constructed by a random invertible matrix B
$← GLN (Zq),

we call the resulting (B,B∗) a pair of random dual bases. A DPVS is a bilinear group setting
(G1,G2,Gt, g1, g2, gt, e, q,N) with dual orthogonal bases. In this work, we also use extensively
basis changes over dual orthogonal bases, the details are recalled in the appendix A.2.

3 Technical Overview

3.1 Motivations for a Refinement on Admissibility

In the seminal work on DMCFE for a function class F by Chotard et al. [CDG+18a], the authors
define the security game with oracles

(Initialize,Corrupt,LoR,DKeyGenShare,Enc,Finalize)

between a challenger and an adversary. The oracle Initalize sets up the parameters, including the
number of clients n and their secret-encryption key pairs (ski, eki). The oracle DKeyGenShare
produces functional key components for F ∈ F using ski under some function tag tag-f ∈ Tag,
while LoR is the left-or-right oracle, which outputs the challenge ciphertext component of x∗

b [i]

under tag ∈ Tag upon receiving (x∗
0[i],x

∗
1[i]) for b

$← {0, 1}. An adversary can corrupt any client
i of his choice by querying Corrupt so as to receive both (ski, eki).

In the end, a set of conditions is specified such that the adversary wins the game only when
they conform to these conditions and outputs a correct b′ equal to the challenge bit b. The main
reason there are such conditions is to focus only on the scenarios where a notion of semantic
security really makes sense in this DMCFE setting. In this paper we call an attack that satisfies
such conditions an admissible attack. Checking these conditions is done by a Finalize procedure
in the security game, according to the sets C of corrupted clients (asked to Corrupt), H of
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honest clients, and Q of key queries (asked to DKeyGenShare) during the attack. To recall
from [CDG+18a, Def. 2, Def. 5], the adversary’s output is ignored and replaced by a random bit,
i.e the attack is NOT admissible, if one of the following holds:

1. There exists a corrupted client i ∈ C such that the i-th components of the challenge messages
(x∗

0,x
∗
1) are not the same, i.e. x∗

0[i] ̸= x∗
1[i].

2. There exists a tag tag ∈ Tag (respectively, tag-f ∈ Tag) and i ̸= j ∈ H such that the
j-th challenge component (respectively, key component) is queried but the i-th challenge
component (respectively, key component) is not.

3. None of the two above conditions are satisfied, but there exists a function F queried to
DKeyGenShare that differs on (x∗

0,x
∗
1), i.e. F (x∗

0) ̸= F (x∗
1).

Our observation is that only the condition 3 can be justified for the sake of avoiding trivial attacks,
while the other conditions 1 and 2 do not have satisfactory explanations. About condition 1, we
have seen from the attacks in the paragraph Impact and Feasibility of Section 1 that this
condition is artificial and unfortunately excludes also non-trivial attacks. About condition 2,
follow-up works [CDG+18b, CDSG+20] and other results on the subject [AGRW17, DOT18,
ABKW19, ABG19] show that we can completely remove this constraint. Our objective now
becomes devising a less restrictive admissible condition, which should capture and generalize only
condition 3. We recall that a less restrictive condition implies more attacks will be considered
non-trivial and we obtain a stronger security model.

3.2 Towards a New Admissibility Condition under Separated Corruption of Keys

Our first step is to separate the corruption of ski from that of eki, i.e. the adversary has to
specify which type of keys with respect to component i he wants to corrupt. All prior works
allow the adversary to corrupt both keys at once. This separation helps us define in a finer
way which information the adversary can deduce using each type of corrupted keys, and thus
even deal with public-key encryption. As a result, we have sets of corrupted and honest clients
(Cskey,Hskey), (Cekey,Hekey), independently for the secret keys (skj)j and the encryption keys
(eki)i. This even allows to have independent sets of clients owning the secret keys (skj)j and the
encryption keys (eki)i. Our complete security experiment can be found in Figure 1. Being already
mentioned in Previous Corruption Model for (D)MCFE of Section 1, to the best of our
knowledge, almost all prior proposed contructions of (D)MCFE can not handle separate corruption
of eki and ski, for example, see [CDG+18a, CDG+18b, LT19, ABKW19, ABG19, AGT21b],
despite the fact that a such separation is meaningful and is indeed discussed notably in the
security model of [AGT21b].

Next, we represent an n-ary function F : D1 × · · · × Dn → R of a function class F by a
length-m vector of parameters from Param1 × · · · × Paramm, given by a deterministic encoding
p : F → Param1 × · · · × Paramm and m can be different from n. Given such representations
as vectors for both inputs and functions, we define the notion deducible inputs and functions
(see Definition 3). More specifically, let Hinp ⊆ [n],Hfunc ⊆ [m] and suppose we are given
xinp ∈ (Di)i∈Hinp

and yfunc ∈ (Parami)i∈Hfunc
as lists of inputs and parameters that are indexed by

Hinp,Hfunc respectively. A vector z is deducible from xinp if their coordinates at positions in Hinp

are the same. Similarly, a function G is deducible from yfunc if its parameters coincide at positions
in Hfunc with yfunc. Intuitively, the lists (xinp,yfunc) play the role of “honest” predetermined
input’s components and function’s parameters, whilst the deducible (z, G) signifies what the
adversary can infer by manipulating the remaining “corrupted” parts of the input and function.

Being equipped with this notion of deducible inputs and functions, our admissible condition
is formulated as:

Given the sets (Hskey,Hekey), an attack is NOT admissible if there exist tag, tag-f ∈ Tag,
a function F ∈ F with parameters y = (yj)j∈[m], two challenges (x∗

0,x
∗
1) := (x(0)

i , x(1)

i )i∈[n]
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such that (F, tag-f) is queried to DKeyGenShare, ((x(0)

i , x(1)

i )i∈[n], tag) is queried to LoR

and there exists a pair (z(0), z(1)) deducible from (x(0)

ekey,x
(1)

ekey), a function G deducible from
yskey satisfying G(z(0)) ̸= G(z(1)) where we define yskey := (yi)i∈Hskey

and for b ∈ {0, 1},
x(b)

ekey := (x(b)

i )i∈Hekey
.

It can be verified that if an attack satisfies the previous notion of admissibility in the original
work [CDG+18a], such an attack will satisfy our notion of admissibility as well. Moreover, we can
adapt naturally our admissibility from DMCFE to MCFE5 and also demonstrate that the prior
DDH-based constructions for MCFE with deterministic encryption, for example from [CDG+18a,
ABG19, CDSG+20] to name a few, as well as an LWE-based construction for MCFE from [LT19]
with slightly randomized encryption by Gaussian errors, cannot be proven secure in our new
model by giving a concrete admissible attack, as already explained in Section 1.

3.3 Optimality of the New Admissibility: A Conceptual Challenge

After formulating a new admissibility condition, one natural question arises: Is this the most
suitable condition? From a conceptual point of view, we want to prove that

For certain function classes, our admissibility cannot be relaxed, i.e. one cannot admit some
non-admissible attack following our definition and still hope to be able to construct some
specific efficient scheme that is provably secure.

Unsurprisingly, this poses a great definitional problem.
First of all, in all previous studies on (D)MCFE starting from [CDG+18a], the admissibility

concerns adversaries in the security game. Hence, if we want to prove the above claim, we need
to consider all possible adversaries that can run non-admissible attacks and argue that they
must be excluded. This is hard to argue rigorously, for example, what happens if a “dummy”
adversary behaves in a non-admissible way but in the end outputs only a random guess for the
challenge bit? Therefore, our very first step is to define the admissibility condition differently
and take into account general attacks instead of adversaries. Afterwards, our optimality notion
for an admissibility condition on attacks is stated that:

An admissibility is optimal for F if we can construct a passive ppt distinguisher S that
receives some non-admissible attack coming from the queries of an adversary A to a challenger
Chall in the game for a DMCFE E , uses only properties of F , and devises a generic strategy
to output the correct challenge bit with significant probability in the security game against
any arbitrary DMCFE E ′.

Intuitively, S passively observes the non-admissible queries in the attack from some specific
interaction between A against some specific scheme E . Yet, these queries helps S come up
with a general approach to win significantly against any DMCFE scheme in a game that allows
such non-admissible behaviors. This means it is impossible to prove security whenever this
kind of behaviors is allowed. We formalize all these details in Definition 11 and Theorem 12,
Remark 14 elaborates more on the proof of our optimality claim. The the appendix B.1 verifies
our admissibility’s optimality for concrete most-studied function classes. Informally, we will
explain in Section 4 the framework we proposed for arguing the optimality of an admissibility.
Finally, the detailed admissibility condition for the class of inner products is given in Remark 15.

3.4 DMCFE for Inner Products with Refined Security Model

After introducing a new notion of admissibility in the security model for DMCFE and argue its
optimality, we provide concrete constructions of DMCFE for inner products that are secure in

5 The admissibility for MCFE is the particular condition when Hskey = [m] and thus yskey = y, meaning the only
deducible function is F itself.
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this model. Our results are twofold. In Section 5.1 we give an intermediate construction where
the new admissibility is translated in the case of inner-products together with the complete
queries restriction (similar to condition 2 in previous works). In Section 6, we leverage this
backbone construction from Section 5.1 to remove this complete queries restriction via a generic
transformation as well as a concrete scheme with improved security.

In the following we highlight the main ideas of our backbone construction in Section 5.1. Our
function class of interest is for computing inner products F IP = {Fy} and Fy :

(
Z∗
q

)n → Zq is
defined as Fy(x) := ⟨x,y⟩. The parameter vector of Fy is simply y = (y1, . . . , yn) ∈ Zn

q and thus
the number of parameters is the same as the dimension of the Zq-vector space for a prime q.
Our construction relies on the notion of Dual Pairing Vector Spaces (DPVSes, see Section 2.2).
We use DPVSes in the (additively written) bilinear group setting (G1,G2,Gt, e, g1, g2, gt). We
sample n pairs of random dual bases (Hi,H

∗
i )

n
i=1. Each client i will use their encryption key

eki to encrypt the component xi under some tag to get a ciphertext component cttag,i, which
is a vector of elements in G1 computed using Hi. Accordingly, each secret key ski will be
used by the DKShare in the decentralized key generation so as to generate a key component
dktag-f,i for yi under some tag-f, which is a vector of elements in G2 computed using H∗

i . During
decryption, the product cttag,i × dktag-f,i of vectors lying in dual bases will yield an element in
Gt of the form in the IPFE scheme by Agrawal, Libert, and Stehlé (ALS) [ALS16]. We denote
by S = (s1, . . . , sn), U = (u1, . . . , un) two vectors of secret scalars, intuitively which will be
used in ALS ciphertext components Jsiω + uiω

′ + xiK, where J(ω, ω′)K←H(tag) comes from a
full-domain hash function. In a centralized setting, such as the single-client scheme in [ALS16]
or the MCFE scheme in [CDG+18a], the ALS key extraction provides ⟨S,y⟩ and ⟨U,y⟩ to be
used in decryption.
Decentralizing ALS Key Extraction under Separated Corruption. The first technical
challenge is how to implement the ALS key extraction in a decentralized manner, because each
key generator possessing yi will not be able to compute ⟨S,y⟩ and ⟨U,y⟩ due to the lack of
(yj)j ̸=i. Our idea is to use (siyi, uiyi) in the i-th key components, masked by some randomness,
then exploit the properties of products in DPVS that multiply facing coordinates together in
order to “glue” this randomness to appropriate values in the i-th ciphertext component that
enables correct decryption. More specifically, the components have the following form:

cttag,i ( · · · ωpi ω′qi ALS-ciph · · · )Hi ;
dktag-f,i ( · · · siyiαi + uiyiγ

′
i siyiγi + uiyiαi yi · · · )H∗

i
;

where ALS-ciph is the scalar in ALS ciphertext and (pi, qi) in cttag,i together with (αi, γi, γ
′
i) in

dktag-f,i satisfy piαi = ζ1, qiγi = ζ2, qiαi = ζ3, piγ
′
i = ζ4 and ζ1, ζ2, ζ3, ζ4

$← Z∗
q are determined

at setup time. However, the aforementioned local gluing technique is not enough, as it alone
still reveals information about individual xiyi from cttag,i × dktag-f,i. A remedy is to put another

layer of random secret sharings θi
$← Zq into the partial key components such that

∑n
i=1 θi = 0

so that only when n pairs of ciphertext-key components are combined together will we obtain
the decrypted result. This new secret shares (θi)i are randomized by dtag-f←H(tag-f) for each
functional key, the newly randomized (dtag-fθi)i will behave indistinguishably from a random
independent secret sharing of 0 under DDH. We refer to Section 5.1 and the transition G6 → G7

in in the proof of Theorem 16 for more details.
Handling Separated Corruption. Each encryption key eki will contain information relevant
to the basis Hi so that client i can compute cttag,i, meanwhile each key generator can use ski
related to the dual basis H∗

i for deriving the partial ki,ipfe. It appears that the contents of eki
and ski belong to dual bases, independent for each i, and we handle their separated corruption
by basis changes over (Hi,H

∗
i ) in DPVS. We note that as soon as we program the basis change

of one basis, we cannot control the change on its dual counterpart (defined by linear relations,
see the appendix A.2). To this end, our proofs can handle at best the scenario where one key
type must be statically corrupted whereas the other’s corruption can be dynamic, otherwise the
fact that for some i the keys eki and ski can be corrupted dynamically, in separate ways, can
lead to inconsistency between basis changes. In particular, we use basis changes to program the

https://orcid.org/0000-0002-3867-4209
https://orcid.org/0000-0003-1136-4064
https://orcid.org/0000-0002-6668-683X
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master secret values (si, ui)i as well as the secret sharings (θi)i, thus we want to program the
changes on the dual bases H∗

i . Consequently, we enforce static corruption on ski and perfom
those changes on i corresponding to honest ski

6.

Achieving New Admissibility by Embedding Revocation Mechanism into Compo-
nents. The second technical challenge is to handle our new admissibility. In the prior weaker
admissible condition introduced in [CDG+18a], where (eki, ski) are corrupted together, if i ∈ [n]
is corrupted then x∗

0[i] = x∗
1[i]. Putting forward the translation of our new admissibility in the

functionality for inner products, the concrete conditions are: let ∆x[i] := x∗
0[i]− x∗

1[i], then

1. For all (tag-f,y) ∈ Q,
∑

i∈(Hskey∪Hekey)
∆x[i]y[i] = 0.

2. For all i ∈ Cekey \ Cskey, either x∗
0[i] = x∗

1[i] or y[i] = 0.
3. For all i ∈ Cskey, x∗

0[i] = x∗
1[i].

As the main complication compared to [CDG+18a, CDSG+20], when i ∈ Cekey \ Cskey it can be
the case that ∆x[i] ̸= 0 and y[i] = 0. We want to ensure that even in this configuration the
adversary cannot distinguish the i-th ciphertext components.

We interpret this situation in the language of revocation: if the adversary obtains the i-th
key component dktag-f,i for yi := y[i] = 0, which is honestly generated as i ∈ Cekey \ Cskey, then
implicitly we are “revoking” the ability to learn information about the i-th challenge component
using dktag-f,i, even when the adversary can encrypt whatsoever using the corrupted eki, whose
role now resembles a “public key” as in usual revocation systems. This leads us to the idea of
embedding some sort of DDH-based revocation technique into each i-th component. We need to
apply some revocation technique that is compatible with the bilinear group setting and the ALS
ciphertext form, which is current employ at each component i in cttag,i. We turn our attention
to a recent work by Agrawal et al. [ABP+17], which builds public trace-and-revoke systems from
standard assumptions and is particularly suitable for our objective because their constructions
can be generically based on the DDH-based ALS IPFE. At a very high level, the decryption for
m of the precedent scheme for revocation can be recasted as:

ALS-IPFE.Dec(skid, ct)

⟨xid,vR⟩
=
⟨xid,vR ·m⟩
⟨xid,vR⟩

= m (2)

where skid is the decryption given for an identity id, xid is some vector associated to id, and vR

is derived from the revoked set R. With overwhelming probability, ⟨xid,vR⟩ ≠ 0 conditioned on
id /∈ R.

To adapt to our situation the division is translated to subtraction of coordinates and our
“revoking” test depends only on a scalar yi and whether yi = 0 or not, the inner product become
scalar multiplications in Z∗

q . Consequently, we introduce extra coordinates in the DPVS bases
(Hi,H

∗
i ) to implement the aforementioned revocation technique, locally inside the vector’s

components as follows:

cttag,i ( ωpi ω′qi ALS-ciph− rivi riti · · · rand )Hi ;
dktag-f,i ( siyiαi + uiyiγ

′
i siyiγi + uiyiαi yi yivi/ti · · · dtag-fθi )H∗

i
;

Using extra coordinates to contain J(ALS-ciph− rivi, riti)K1 in cttag,i as well as J(yi, yivi/ti)K2 in
dktag-f,i helps us perform a “local” ALS+revocation decryption for component i, following the

idea (2), when performing cttag,i × dktag-f,i. Intuitively, our uniformly random scalar ri
$← Zq

plays the role similar to that of xid in the blueprint from [ABP+17], that helps proving semantic
security in the case of “revoked” yi = 0 under random basis changes in DPVS using DDH.
This probabilistic layer with ri

$← Zq allows to deal with corrupted encryption keys, even when
x∗
0[i] ̸= x∗

1[i]. This somehow covers public-key encryption. Our scheme is secure in the stronger
security model under new admissibility and the complete queries restriction, adaptively in the
challenges, with dynamic corruption of eki and static corruption of ski.

6 There are further involved technicalities to ensure that eki is constructed consistently, e.g. see the transition
G7 → G8 in the proof of Theorem 16.
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4 A Stronger Security Model for Decentralized Multi-Client Functional
Encryption

This section presents a new security model for (D)MCFE, in which we refine the admissibility of
adversaries in the security game and allow a more fine-grained corruption of keys. Following the
line of works by Chotard et al. [CDG+18a, CDSG+20], such a notion of admissible adversaries is
for excluding the attacks that are inevitable under which we cannot prove security. Our objective
is to define the admissible condition in a way that excludes as few attacks as possible, and as
soon as such condition is weakened, there is an unconditional generic attack to trivially win the
security game against any concrete scheme. First of all, Definition 3 formalizes the terminologies
of parameters of a function and deducible functions/inputs.

Definition 3 (Deducible inputs and functions). Fix λ ∈ N and denote by Fλ a family of
n-ary functions indexed by λ, with domain Dλ,1 × · · · ×Dλ,n and range Rλ, where n = n(λ) ∈ N
is a function. Let Param1, . . . ,Paramm denote m sets of parameters for functions in Fλ, where
m = m(λ) ∈ N is a function. Suppose there exists a deterministic encoding p : Fλ → Param1 ×
· · · × Paramm, that maps a function Fy ∈ Fλ to its parameters y ∈ Param1 × · · · × Paramm. Let
Hinp ⊆ [n],Hfunc ⊆ [m] and suppose we are given xinp ∈ (Dλ,i)i∈Hinp

and yfunc ∈ (Paramj)j∈Hfunc

as lists of inputs and parameters that are indexed by Hinp,Hfunc respectively.
A vector z ∈ Dλ,1 × · · · × Dλ,n is said to be deducible from xinp if ∀ i ∈ Hinp : z[i] = xinp[i].

A function G is said to be deducible from yfunc if for all i ∈ Hfunc, we have p(G)[i] = yfunc[i].

Remark 4. If yfunc = y, for the parameter y of some function Fy, then the only function
deducible from yfunc is Fy itself. In the DMCFE setting, there will be situations with non-trivial
yfunc where Hfunc ⊊ [m]. For concrete function classes in our construction, we focus on the class
to compute inner products F IP = {Fy} and Fy :

(
Z∗
q

)n → Zq that is defined as Fy(x) := ⟨x,y⟩.
For inner products, the parameters of a function Fy ∈ F IP can be precisely defined to be
p(Fy) := y ∈ Zn

q and the number of parameters m is equal to the number of arguments n. When
Fλ is clear from context, we omit the subscript λ.

We now recall the notion of decentralized multi-client functional encryption (DMCFE) whose
syntax is given below.

Definition 5 (Decentralized Multi-Client Functional Encryption). A decentralized
multi-client functional encryption (DMCFE) scheme for a function class F consists of five
algorithms

(Setup,DKShare,DKeyComb,Enc,Dec)

that are defined below:

Setup(1λ): Given as input a security parameter λ and n = n(λ),m = m(λ), generate in a possibly
interactive manner n encryption keys (eki)i∈[n] as well as m secret keys (skj)j∈[m] where
m,n : N→ N are functions.

Enc(eki, tag, xi): Given as inputs an encryption key eki, a message xi ∈ Dλ,i, and a tag tag,
output a ciphertext cttag,i.

DKShare(skj , tag-f, yj): Given a secret key skj, a tag tag-f ∈ Tag, and the j-th parameter yj,
output a partial functional key dktag-f,j.

DKeyComb((dktag-f,j)j∈[m], tag-f, F ): Given a tag tag-f together with a function F and m partial
functional keys dktag-f,j for the parameters p(F ), output the functional key dktag-f,F .

Dec(dktag-f,F , c): Given the functional decryption key dktag-f,F and a list of ciphertexts c :=
(cttag,i)

n
i=1 of length n, output an element in Rλ or an invalid symbol ⊥.

We make the assumption that all public parameters are included in the secret keys and the
encryption keys, as well as the (partial) functional decryption key.

https://orcid.org/0000-0002-3867-4209
https://orcid.org/0000-0003-1136-4064
https://orcid.org/0000-0002-6668-683X
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Correctness. We require that for sufficiently large λ ∈ N, for all tag, tag-f ∈ Tag, for all
F ∈ F , (xi)i∈[n] ∈ Dλ,1 × · · · × Dλ,n and

skj , (eki)i∈[n]←Setup(1λ); dktag-f,j←DKShare(skj , tag-f, yj)j∈[m] ;

dktag-f,F←DKeyComb((dktag-f,j)j , tag-f, F ); (cttag,i)i←(Enc(eki, tag, xi))i

where i ∈ [n] and j ∈ [m], the following holds with overwhelming probability:

Dec (dktag-f,F , (cttag,i)
n
i=1) = F (x1, . . . , xn) when F (x1, . . . , xn) ̸= ⊥7 (3)

where F : Dλ,1 × · · · × Dλ,n → Rλ and the probability is taken over the random coins of
algorithms.

Security. We follow the approach in the work by Chotard et al. [CDG+18a] so as to define the
security game with oracles Initialize, Corrupt, LoR, Enc, DKeyGenShare, and Finalize.
We recall that the oracle Enc is necessary for a simpler notion of one challenge, while retaining
an equivalence to the multi-challenge notion using a hybrid argument shown in Lemma 8. The
adversary is also able to corrupt separately the secret key skj of any key-generator j as well
as the encryption key eki of any client i, which is done via requests (i, skey) or (j, ekey) to the
oracle Corrupt, respectively. We need to exclude trivial attacks that can be mounted in the
security experiment. Those restrictions are encompassed in the notion of admissibility, which is
extended from similar notions in the works of [CDG+18a, CDSG+20].

In a nutshell, Definition 6 gives the definition of admissibility, generalizing the admissibility
condition that has been consistently used since the seminal work of Chotard et al. [CDG+18a].
We refer to Section 3 for a high-level discussion. In the subsequent Section 4.1, we give the full
formal treatment to prove the optimality of our admissibility condition in Definition 6. The
successive security analyses of our DMCFE schemes rely crucially on this definition, translated
for the concrete class of inner product in Remark 15.

Definition 6 (Admissibility condition). Let A be a ppt adversary and let

E = (Setup,DKShare,DKeyComb,Enc,Dec)

be a DMCFE scheme for a function class F set up w.r.t λ ∈ N. In Finalize, considering the
queries (Q,QEnc, Cskey, Cekey, {(x∗

0,x
∗
1, tag)}, {(x, tag(k))}), we say that the attack corresponding

to these queries is NOT admissible if the following is satisfied

There exist tag, tag-f ∈ Tag, a function F ∈ F having parameters y ∈ Param1×· · ·×Paramm,
two challenges (x(0)

i , x(1)

i )i∈[n] such that (tag-f, F ) ∈ Q is queried to DKeyGenShare,

((x(0)

i , x(1)

i )i∈[n], tag) is queried to LoR and there exists a pair (z(0), z(1)) deducible from

(x(0)

ekey,x
(1)

ekey), a function G deducible from yskey satisfying

G(z(0)) ̸= G(z(1)) , (4)

where we define yskey := (y[i])i∈Hskey
and for b ∈ {0, 1}, x(b)

ekey := (x(b)

i )i∈Hekey
.

Otherwise, we say that the aforementioned attack is admissible.

Definition 7 (IND-security for DMCFE). A DMCFE scheme

E = (Setup,DKShare,DKeyComb,Enc,Dec)

7 See [BO13, ABN10] for discussions about this relaxation. The general reason is that some functionality might
contain ⊥ in its range and if F ((xi)i) = ⊥ we do not impose Dec

(
dktag-f,F , (Enc(eki, xi, tag))

n
i=1

)
= F ((xi)i),

neither do we disallow it.
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Initialize(1λ)

Initialize(1λ, (x(0)

i , x(1)

i )i∈[n],Qkey)

Initialize(1λ, Cstatekey, Cstatskey)

b
$← {0, 1}

(skj)j∈[m], (eki)i∈[n]←Setup(1λ)
Qparam = Q := ∅, Cskey = Cekey := ∅
Hskey = [m],Hekey := [n]
Q := Qkey

Cekey := Cstatekey, Cskey := Cstatskey

Hekey := [n] \ Cekey,Hskey := [m] \ Cskey
Return pk

Corrupt(i, type)

If type = skey:
Ignore
Cskey := Cskey ∪ {i}; Hskey := Hskey \ {i}
Return ski

Else:
Ignore
Cekey := Cekey ∪ {i}; Hekey := Hekey \ {i}
Return eki

LoR(i, x(0)

i , x(1)

i , tag∗)

LoR(i, tag∗)

Enc(eki, tag
∗, x

(b)
i )→ ct

(b)
tag∗,i

Return ct
(b)
tag∗,i

DKeyGenShare(j, tag-f, yj)

Ignore
Qparam := Qparam ∪ {(tag-f, yj)}
If all parameters (yj)

m
j=1 of some F are in Qparam:

Q := Q∪ {(tag-f, F )}
dktag-f,j←DKShare(skj , tag-f, yj)
Return dktag-f,j

Finalize(b′)

If the attack is NOT admissible:
return 0

Else return
(
b′

?
= b

)
Enc(i, tag, xi)

Return Enc(eki, tag, xi)

Fig. 1: The security games Exprdmc-ind-cpa
E,F ,A (1λ), Exprdmc-sel-ind-cpa

E,F ,A (1λ) , and Exprdmc-stat-ind-cpa
E,F ,A (1λ)

for Definition 7 and 17. The admissibility condition is defined in Definition 6.

for the function class F = {Fλ}λ∈N is xx-secure if for all ppt adversaries A, and for all sufficiently
large λ ∈ N, the following probability is negligible

AdvxxE,F ,A(1
λ) :=

∣∣∣∣Pr[ExprxxE,F ,A(1
λ) = 1]− 1

2

∣∣∣∣ .

The game ExprxxE,F ,A(1
λ) is depicted in Figure 1. The security level indicator xx can be: dmc-ind-cpa

to indicate IND-security with adaptive challenges, dynamic corruption of ekey, and dynamic
corruption of skey; dmc-sel-ind-cpa to indicate selective IND-security with selective challenges,
dynamic corruption of ekey, and dynamic corruption of skey; dmc-stat-ind-cpa to indicate static
IND-security with adaptive challenges, static corruption of ekey, and static corruption of skey8;
dmc-ind-cpa-1chal indicate one-time IND-security with one adaptive challenge tag, dynamic
corruption of ekey, and dynamic corruption of skey. The probability is taken over the random
coins of A and the algorithms.

Lemma 8 allows us to concentrate on the notion of one-time IND-security for our DMCFE
constructions. The proof is a standard hybrid argument and we give it in the appendix C.1 for
completeness.

Lemma 8. Let E = (Setup,DKShare,DKeyComb,Enc,Dec) be a DMCFE scheme for the function
class F . If E is one-time IND-secure, then E is IND-secure.
8 In addition, we can allow dynamic corruption on one type but static corruption on the other type of keys, such
as dmc-stat-sk-ind-cpa to indicate partially static IND-security with adaptive challenges, dynamic corruption of
ekey, and static corruption of skey.
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4.1 Optimality of Admissibility as per Definition 6

In this section, we demonstrate that our notion of admissibility in Definition 6 is capturing all
trivial attacks against DMCFE schemes for non-trivial function classes, which include the class
of inner-product and quadratic functionalities. The high-level plan is given below.
Proving Optimality. The general idea on defining the optimality of an admissibility condition
can be revisited in Section 3.3. We now explain briefly how one can show that an admissibility
condition is optimal following what we try to define. First and foremost, a notion of optimality
makes sense when we consider only certain functionalities and not any arbitrary class of functions.
For example, for a general functionality, the adversary’s admissibility as defined in Definition 6
might not be efficiently decidable. Roughly speaking, Finalize may have to go through all
(z(0), z(1)) deducible from (x(0)

ekey,x
(1)

ekey) and all G deducible from yskey so as to check relation (4).
Therefore, we want to focus on classes for which the admissibility can be decided efficiently by
Finalize, at least for the sake of having an efficient challenger in the security game.

In addition, we require a further property of the functionality under consideration: in view
of the admissibility check (4), the deduction of (z(0), z(1)) from (x(0)

ekey,x
(1)

ekey) and of a function
G from yskey can be done efficiently. We coin this property fixed-component distinguishability.
In summary, we restrain the optimality evaluation to classes that are (1) fixed-component
distinguishable and (2) for which the admissibility is efficiently decidable. In the appendix B.1,
we prove that both most studied functionalities for inner products and quadratic evaluations
satisfy properties (1) and (2).

The core of our reasoning that an admissibility condition is optimal comprises building a ppt
distinguisher, which can exerts a non-admissible attack, to trivially win significantly the security
game against any DMCFE scheme. We recall that Definition 6 views attacks as ensembles of
queries made by some adversary in its security game. Because the class allows deciding efficiently
the admissibility, our distinguisher can efficiently determine which query in the attack will violate
the check (4), and thanks to the fixed-component distinguishability, the triplet (z(0), z(1), G) can
be concretely reconstructed in an efficient manner.

In the end, facing any DMCFE challenger that allows the foregoing non-admissible behaviour,
our distinguisher can simply use (z(0), z(1), G) to trivially win the game. This means that whenever
we allow a non-admissible attack, or in other words whenever we try to relax Definition 6, no
DMCFE scheme can be proved secure due to the existence of the above distinguisher.

To begin our formal treatment, we restrain our attention to particular function classes that
satisfy certain properties.

Definition 9 (Fixed-component distinguishable classes). Fix λ ∈ N and denote by
Fλ = {F : Dλ,1 × · · · × Dλ,n → Rλ} a family of n-ary functions indexed by λ having m
parameters, where m = m(λ), n = n(λ) are functions.

For F ∈ Fλ, a triple (x(0)

inp,x
(1)

inp,Hinp), where x(b)

inp ∈
∏

i∈Hinp
Dλ,i for b ∈ {0, 1}, is said to be

distinguishing Fλ with fixed components if there exists a deducible pair (z(0), z(1)) ∈
∏

i∈[n]Dλ,i

such that Fλ(z
(0)) ̸= Fλ(z

(1)) where{
z(b)[i] = x(b)[i] for b ∈ {0, 1}, i ∈ Hinp

z(0)[i] = z(1)[i] ∀ i ∈ [n] \ Hinp

.

A function F is said to be fixed-component distinguishable if there exists a triple distinguishing
F with fixed components and a ppt Turing machine that, given as input this triple, outputs the
corresponding deducible pair.

A function class Fλ is fixed-component distinguishable if for all F ∈ Fλ with parameters
p := p(F ), there exists a fixed-component distinguishable function G deducible from (p[i])i∈Hfunc

for some Hfunc ⊆ [m], and a ppt Turing machine that, given as inputs (F,Hfunc), outputs G.
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Remark 10. We remark that a function class F is fixed-component distinguishable does not
necessarily imply that the admissibility from Definition 6 for F can be efficiently decided.
Roughly speaking, given a function among the adversary’s queries, the ppt Turing machine from
fixed-component distinguishability will output some deducible function G for which one can test
the admissible condition (4) efficiently. But that is not enough, as to decide the admissibility of
an attack, we need to check all such deducible functions and there is no further guarantee in
the case of general functionalities that we can do this check efficiently. In the concrete cases of
inner products and quadratic functions, the check over all such deducible functions can be done
efficiently by using their linear properties, see the appendix B.1 for more details.

We now define what means for an admissibility to be optimal for a function class F . For
simplicity, we can consider the one-challenge setting thanks to Lemma 8.

Definition 11. Let λ ∈ N and denote by F a family of n(λ)-ary functions indexed by λ, with
m(λ) parameters for each member of F . An admissibility condition adm(·) is optimal for F if
there exists a ppt distinguisher S so that for all non-admissible

(Q,QEnc, Cskey, Cekey, {(x∗
0,x

∗
1, tag)}, {(x, tag(k))})

of some ppt adversary A and against a DMCFE E for F in a security experiment ExprE,F ,A given
in Figure 1, we have

Pr
[
S((Q,QEnc, Cskey, Cekey, {(x∗

0,x
∗
1, tag)}, {(x, tag(k))})) = b : b←Chall(randChall)

]
≥ 1

poly(λ)

where (Q,QEnc, Cskey, Cekey, {(x∗
0,x

∗
1, tag)}, {(x, tag(k))}) is well-defined at the time of Finalize

and b←Chall(randChall) means the challenger Chall uses the bit b in ExprE,F ,A.

We now state our main theorem for the optimality of our admissibility.

Theorem 12. Let F be a function class that has efficient decidability for admissibility and is
fixed-component distinguishable. Then, our admissibility condition as defined in Definition 6 is
optimal for F .

Proof (Of Theorem 12). Without loss of generality, we consider the one-challenge notion.
We need to prove that: there exists a ppt distinguisher S so that for any non-admissible
(Q,QEnc, Cskey, Cekey, {(x∗

0,x
∗
1, tag)}, {(x, tag(k))}) of some DMCFE E for F and some ppt adver-

sary A in a security experiment ExprxxE,F ,A given in Figure 1, we have

Pr
[
S((Q,QEnc, Cskey, Cekey, {(x∗

0,x
∗
1, tag)}, {(x, tag(k))})) = b : b←Chall(randChall)

]
≥ 1

poly(λ)
.

Let Eabs = (Setupabs,DKShareabs,DKeyCombabs,Encabs,Decabs) be an abstract DMCFE for F
that satisfies the correctness relation (3). We describe the distinguisher S as follows:

1. The distinguisher S parses

(Q,QEnc, Cskey, Cekey, {(x∗
0,x

∗
1, tag)}, {(x, tag(k))})

then use Eabs and (Q,QEnc, {(x∗
0,x

∗
1, tag)}) for abstracting the key components to obtain

{(dkabstag-f,F,j)j∈[m]}(tag-f,F )∈Q, the challenge ciphertext components to obtain (ctabstag,i)i∈[n] for

each {(x∗
0,x

∗
1, tag)}, and the encryption responses to obtain (ctabs,(k)i )i∈[n]. If there are cor-

rupted keys skj or eki queried by A, they will also be replaced by their abstracted counterparts
skabsj or ekabsi . In the following S only needs the abstract DMCFE Eabs for F , no matter what
the details of the concrete E are.
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2. If there exists (tag-f, F ) ∈ Q such that F (x∗
0) ̸= F (x∗

1), S combines the key components of
(tag-f, F ), decrypts the challenge ciphertext components, and outputs 1 if and only if the result
is F (x∗

1). All algorithms come from Eabs = (Setupabs,DKShareabs,DKeyCombabs,Encabs,Decabs).
Else, in the following we assume that F (x∗

0) = F (x∗
1) for all (tag-f, F ) ∈ Q.

3. Because this is a non-admissible attack, S uses the efficient decidability of F to find
(tag-f, F ) ∈ Q, whose parameters is y := p(F ), so that: there exists a pair (z(0), z(1)) deducible
from (x(0)

ekey,x
(1)

ekey), a function G deducible from yskey satisfying

G(z(0)) ̸= G(z(1)) ,

where yskey := (y[i])i∈Hskey
and x(0)

ekey := (x(0)

i )i∈Hekey
, x(1)

ekey := (x(1)

i )i∈Hekey
. We remark that

finding F can be done efficiently in Q because the current attack comes from the execution
of some ppt adversary A, which implies the size of Q is polynomially bounded.

4. Because F is fixed-component distinguishable (see Definition 9), using F and Cskey, S
can efficiently find a function G deducible from yskey such that G is fixed-component
distinguishable.

5. Thanks to the fixed-component distinguishability of G, using (x(0)

ekey,x
(1)

ekey) and Hekey, the
pair (z(0), z(1)) can be found efficiently by S.

6. The distinguisher S then uses the corrupted keys (ekabsi )i∈Cekey to compute new ciphertext

components (c̃t
abs
tag,i)

n
i=1 of z(b) implicitly, using (ctabstag,i)i∈Hekey

for the challenge (x∗
b [i])i∈Hekey

,

and using Encabs to encrypt (z(b)[i])i∈Cekeyusing (ekabsi )i∈Cekey .

7. Next, S uses the corrupted keys (skabsi )i∈Cskey to compute new key components (d̃k
abs
tag-f,G,i)

n
i=1

of G implicitly, using (dkabstag-f,F,i)i∈Hskey
, and using DKShareabs to derive (d̃k

abs
tag-f,F,i)i∈Cskey from

(p(G)[i])i∈Cskey .

8. Finally, S uses DKeyCombabs to combine the newly generated key components (d̃k
abs
tag-f,i)

n
i=1.

Then S decrypts the newly generated challenge ciphertext (c̃t
abs
tag,i)i∈[n] using the abstract

algorithm Decabs, the adversary outputs 1 if and only if the result is equal to G(z(1)).

In the end, S outputs 1 if and only if (Q,QEnc, Cskey, Cekey, {(x∗
0,x

∗
1, tag)}, {(x, tag(k))}) comes

from an execution of any A against Chall of E in which Chall picks 1 as the challenge bit. This
concludes the proof. ⊓⊔

Remark 13. The abstract object Eabs in the proof of Theorem 12 are used only in our formal
proofs of the optimality for our admissible condition. In the concrete constructions of DMCFE,
no such abstract objects are needed, as the admissibility are examined via concrete tests over
the adversary’s queries in the security game. For instance, see the appendix B.1 for the cases of
linear and quadratic functions.

Remark 14. The generic distinguisher S in Theorem 12 is weak in the sense that all it has is a
non-admissible attack with the corresponding

(Q,QEnc, Cskey, Cekey, {(x∗
0,x

∗
1, tag)}, {(x, tag(k))})

determined by A’s behaviour during the security game, not depending on the concrete implemen-
tation of E . However, thanks to the non-admissibility of the given attack and the fixed-component
distinguishability of the function class, S can still output the correct challenge bit, in the security
against any DMCFE scheme. This means that as soon as we allow some non-admissible behaviour,
where the concrete descriptions of A and E can be arbitrary as long as this behaviour stays
the same, there is no hope in proving security regardless of the specific implementation of E .
Equivalently, our Definition 6 that excludes exactly these non-admissible attacks cannot be
enlarged in any sense and captures the most attacks against which we can prove security. Last
but not least, we see clearly the role of the abstract DMCFE Eabs: it abstracts out the concrete
details of some specific scheme E from which calculations over the non-admissible queries can be
done, and return the “black-boxed” data that obey the correctness of DMCFE schemes for F .



16 Ky Nguyen , Duong Hieu Phan , and David Pointcheval

Remark 15. As a corollary the admissibility’s optimality for the class of inner products
(including for polynomially bounded ranges - see the appendix B.1 for more details), we have
specific conditions for admissible attacks in this case:

1. For all vectors (x∗
0,x

∗
1) that is queried to LoR, for all (tag-f,y) ∈ Q,

∑
i∈H∆x[i]y[i] = 0

where ∆x[i] = x∗
0[i]− x∗

1[i], where H := Hekey ∩Hskey.

2. For all vectors (x∗
0,x

∗
1) that is queried to LoR, for all (tag-f,y) ∈ Q, for all i ∈ Cekey \ Cskey,

either x∗
0[i] = x∗

1[i] = 0 or y[i] = 0.

3. For all vectors (x∗
0,x

∗
1) that is queried to LoR, for all (tag-f,y) ∈ Q, for all i ∈ Cskey,

x∗
0[i] = x∗

1[i].

5 DMCFE for Inner Products with Stronger Security against Complete
Queries

5.1 Construction

This section presents a decentralized multi-client FE scheme, as defined in Section 4, for the
function class F IP,poly

B,B′ and Fy :
(
Z∗
q

)n → Zq is defined as Fy(x) := ⟨x,y⟩ where ∥x∥∞ < B and
∥y∥∞ < B′, where B,B′ = poly(λ) ∈ N are polynomials. The high-level ideas are discussed in

Section 3.4. As discussed in Remark 4, the parameter vector of F IP,poly
B,B′ is simply y of size n.

Hence the number of secret keys and of encryption keys are equal to n. Our admissibility is also
optimal for F IP,poly

B,B′ , see the appendix B.1. We need a full-domain hash function H1 : Tag→ G2
1,

where Tag denotes the set of tags used for ciphertext components and functional key components.
In addition, we also need a hash function H2 : Tag × Zn

q → Zq.

We are in the bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q) and G1,G2,Gt are written
additively. The details of our DMCFE scheme go as follows:

Setup(1λ): Choose n pairs of dual orthogonal bases (Hi,H
∗
i ) for i ∈ [n], where (Hi,H

∗
i ) is a pair

of dual bases for (G6
1,G6

2). We denote the basis changing matrices for (Hi,H
∗
i ) as (Hi, H

′
i):

(Hi = Hi ·T; H∗
i = H ′

i ·T∗)i∈[n]

where Hi, H
′
i ∈ Z6×6

q and (T = JI6K1 ,T
∗ = JI6K2) are canonical bases of (G6

1,G6
2) , for

the identity matrix I6. Sample two full-domain hash functions H1 : Tag → G2
1 and H2 :

Tag × Zn
q → Zq. We recall that interactions are involved only in this Setup phase. For each

i ∈ [n], we write

Hi = (hi,1,hi,2, . . . ,hi,6) H∗
i = (h∗

i,1,h
∗
i,2, . . . ,h

∗
i,6)

and sample S,U, V, T
$← (Z∗

q)
n where S = (s1, . . . , sn), U = (u1, . . . , un), V = (v1, . . . , vn), T =

(t1, . . . , tn). Sample θi
$← Z∗

q such that
∑n

i=1 θi = 0. Then, sample ζ1, ζ2, ζ3, ζ4, pi, qi, αi, γi, γ
′
i

$←
Zq, for i ∈ [n], satisfying

piαi = ζ1 qiγi = ζ2 qiαi = ζ3 piγ
′
i = ζ4 (5)

and output the secret keys ski and the encryption keys eki as follows

ski :=

(
siαih

∗
i,1 + siγih

∗
i,2, uiγ

′
ih

∗
i,1 + uiαih

∗
i,2,

vi
ti
h∗
i,3 + h∗

i,4, θih
∗
i,6

)
eki := (piH

(1)

i − (ζ1si + ζ4ui)H
(4)

i , qiH
(2)

i − (ζ2si + ζ3ui)H
(4)

i , tihi,3 − vihi,4, hi,4, H (6)

i )

where H
(k)
i denotes the k-th row of Hi for i ∈ [n].
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DKShare(ski, (tag-f, info(y)), yi): We assume that the function tag contains tag-f and public
information about info(y). The i-th parameter is yi := y[i]. Compute H2(tag-f, info(y))→
dtag-f,y ∈ Zq. Parse

ski :=

(
siαih

∗
i,1 + siγih

∗
i,2, uiγ

′
ih

∗
i,1 + uiαih

∗
i,2,

vi
ti
h∗
i,3 + h∗

i,4, θih
∗
i,6

)
.

Sample z
$← Zq then compute

ki,ipfe = yi · (siαih
∗
i,1 + siγih

∗
i,2) + yi · (uiγ′ih∗

i,1 + uiαih
∗
i,2) + yi ·

(
vi
ti
h∗
i,3 + h∗

i,4

)
+ dtag-f,y · θih∗

i,6

= (siyiαi + uiyiγ
′
i, siyiγi + uiyiαi,

vi
ti
yi, yi, 0, dtag-f,yθi)H∗

i
.

Output dktag-f,i := ki,ipfe.
DKeyComb((dktag-f,i)i∈[n], tag-f,y): Output ⊥ if there is any incoherence of dtag-f,y among the

dktag-f,i. Otherwise, parse dktag-f,i := ki,ipfe and output dktag-f,y := (ki,ipfe)i∈[n].
Enc(eki, tag, xi): Parse

eki := (piH
(1)

i − (ζ1si + ζ4ui)H
(4)

i , qiH
(2)

i − (ζ2si + ζ3ui)H
(4)

i , tihi,3 − vihi,4, hi,4, H (6)

i )

and compute H1(tag)→ (JωK1 , Jω′K1) ∈ G2
1 and sample ri

$← Zq. Compute

ci,ipfe = (piH
(1)

i − (ζ1si + ζ4ui)H
(4)

i ) · JωK1 + (qiH
(2)

i − (ζ2si + ζ3ui)H
(4)

i ) ·
q
ω′y

1

+ ri · (tihi,3 − vihi,4) + xihi,4 +H (6)

i JωK1
= (ωpi, ω′qi, riti,−(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi − rivi, 0, ω)Hi .

and output cttag,i := ci,ipfe.
Dec(dktag-f,y, c): Parse dktag-f,y = (ki,ipfe)i∈[n] and c := (cttag,i)i. Finally, compute the discrete

logarithm in base gt of JoutKt =
∑n

i=1 (cttag,i × ki,ipfe) and output the small value out.

The correctness of the scheme is verified by:

JoutKt

=

n∑
i=1

(cttag,i × ki,ipfe)

=

n∑
i=1


(ωpi, ω′qi, riti,−(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi − rivi,

0, θi)Hi

×
(siyiαi + uiyiγ

′
i, siyiγi + uiyiαi,−vi

ti
yi, yi,

0, dtag-f,y)H∗
i


(∗)
=

n∑
i=1

q
ωζ1siyi + ωζ4uiyi + ω′ζ2siyi + ω′ζ3uiyi + θidtag-f

y
t

+

n∑
i=1

q
(−(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi) · yi

y
t

=
q
(ωζ1 + ω′ζ2) · ⟨S,y⟩+ (ω′ζ3 + ωζ4) · ⟨U,y⟩

y
t
+

n∑
i=1

Jθidtag-fKt

−
q
(ωζ1 + ω′ζ2) · ⟨S,y⟩+ (ω′ζ3 + ωζ4) · ⟨U,y⟩

y
t
+ J⟨x,y⟩Kt

= J⟨x,y⟩Kt ,

where the equality (∗) comes from system (5). We recall that (θi)i∈[n] is a secret sharing of 0.
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5.2 Adaptive Security against Static Corruptions of Secret Keys

We now give the security theorem of one time IND-security for our construction from Section 5.1,
adaptively in the challenge messages with dynamic corruption of encryption keys and static
corruption of secret keys. We refer to Remark 15 for the concrete interpretation of the security
model. The full proof can be found in the appendix C.2.

Theorem 16. Let E = (Setup,DKShare,DKeyComb,Enc,Dec) be a DMCFE candidate for F IP

from Section 5.1 in a bilinear group (G1,G2,Gt, g1, g2, gt, e, q). Then, E is IND-secure with
static corruption of secret keys in the ROM if the SXDH assumption holds for G1 and G2. More
specifically, let n denote the dimension for inner-products, K denote the maximum number of
key queries, and Q1, Q2 denote the maximum number of random oracle (RO) queries to H1,H2

respectively. For any ppt adversary A against E with static secret key corruption and one-time
challenge, we have the following bound:

Advdmc-stat-sk-ind-cpa-1chal
E,F ,A (1λ) ≤ (3 + 2Q1 +K) · AdvSXDH

G1,G2
(1λ) +

Q2
2

2q

and in the reduction there is an additive loss O(Q1 · tG1 +Q2 · tG2) in time, where tG1 , tG2 is the
cost for one addition in G1,G2.

6 DMCFE for Inner-Products with Stronger Security against Incomplete
Queries

In this section, we show how to obtain a DMCFE scheme that is IND-secure against chosen
plaintext attacks without complete queries restriction (see condition 2 in Section 3.1), under our
stronger admissibility notion. The definition of security notion for the new setting is restated so
that admissible adversaries can query incomplete challenge ciphertexts as well as incomplete
functional keys.

Definition 17 (Admissible attacks with incomplete queries). Let A be a ppt adversary
and let

E = (Setup,DKShare,DKeyComb,Enc,Dec)

be a DMCFE scheme for a function class F set up w.r.t λ ∈ N. We denote by randChall the random
coins of the challenger and randA the random coins of the adversary in an experiment given in
Figure 1. In Finalize, considering the queries (Q,QEnc, Cskey, Cekey, {(x∗

0,x
∗
1, tag)}, {(x, tag(k))}),

we say that the attack corresponding to these queries is NOT admissible if the following is
satisfied

There exist tag, tag-f ∈ Tag, a function F ∈ F , two challenges (x(0)

i , x(1)

i )i∈[n] such that

(F, tag-f) is queried to DKeyGenShare for all honest components, ((x(0)

i , x(1)

i )i∈[n], tag) is
queried to LoR for all honest components, and there exists a pair (z(0), z(1)) deducible from
(x(0)

ekey,x
(1)

ekey), a function G deducible from yskey satisfying

G(z(0)) ̸= G(z(1)) ,

where we define yskey := (yi)i∈Hskey
and for b ∈ {0, 1}, x(b)

ekey := (x(b)

i )i∈Hekey
.

Otherwise, we say that the attack is admissible.

Definition 18 (IND+-security for DMCFE). A DMCFE scheme

E = (Setup,DKShare,DKeyComb,Enc,Dec)
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for the function class F = {Fλ}λ∈N is IND+-secure if for all ppt adversaries A, and for all
sufficiently large λ ∈ N, the following probability is negligible

Advxx+E,F ,A(1
λ) :=

∣∣∣∣Pr[Exprxx+E,F ,A(1
λ) = 1]− 1

2

∣∣∣∣ .

The probability is taken over coins of A and the algorithms. The indicator xx can be among
{dmc-ind-cpa, dmc-sel-ind-cpa, dmc-stat-ind-cpa, dmc-ind-cpa-1chal}9. The experiment Exprxx+E,F ,A(1

λ)

is the same as ExprxxE,F ,A(1
λ) depicted in Figure 1, except that we use Definition 17 for the ad-

missibility condition in Finalize.

6.1 Constructions

Generic Transformation with Security against Selective Challenges. We follow the
same method in [CDSG+20] and apply generically a layer of using a primitive called All-or-
Nothing Encapsulation (AoNE), so as to make our scheme from Section 5.1 secure in our stronger
security model against incomplete queries. Our AoNE-based transformation uses the generic
AoNE from [CDSG+20], which in turn is built on top of a one-time secure symmetric encryption
(OT-SE). In the security proof, which can be naturally adapted from [CDSG+20, Theorem 26],
this OT-SE prevents programing conveniently to achieve adaptive security w.r.t the challenge
ciphertexts. We also remark that the static corruption is unavoidable since the security of AoNE
makes sense only when being applied on honest components, for the security reduction. This
generic transformation is provably secure under static corruption and selective challenges. The
transformation is presented in the appendix B.2.

Concrete Scheme with Security against Adaptive Challenges. We present a concrete
adaptation of our base DMCFE scheme from Section 5.1 to satisfy the stronger security notion
against incomplete challenge ciphertexts as well as incomplete functional keys, with minimal
modifications being put in boxed components for the ease of comparison. The function class
stays the same as in Section 5.1, for which our admissibility is optimal, see the appendix B.1. In
contrast to the generic transformation, we build the AoNE concretely by combining one-time pad
(OTP) and a random oracle (RO). Then, the programmability of the RO helps us circumvent the
problem of adaptive queries. While programming the RO, we indeed exploits in a non-blackbox
manner the OTP as a summation in Z∗

q to accumulate a secret sharing of 0 on the honest parts
(known in advance thanks to static corruption).

The details of our construction go as follows:

Setup(1λ): Sample two full-domain hash functions H1 : Tag → G2
1 and H2 : Tag × Zn

q → G2.
Choose n pairs of dual orthogonal bases (Hi,H

∗
i ) for i ∈ [n], where (Hi,H

∗
i ) is a pair of dual

bases for (G8
1,G8

2) . We denote the basis changing matrices for (H,H∗
i ) as (Hi, H

′
i):

(Hi = Hi ·T; H∗
i = H ′

i ·T∗)i∈[n]

where Hi, H
′
i ∈ Z8×8

q and (T = JI8K1 ,T
∗ = JI8K2) are canonical bases of (G8

1,G8
2) , for the

identity matrix I8. We recall that interactions are involved only in this Setup phase. For each
i ∈ [n], we write

Hi = (hi,1,hi,2, . . . ,hi,8) H∗
i = (h∗

i,1,h
∗
i,2, . . . ,h

∗
i,8)

9 Similarly, we can allow dynamic corruption on one type but static corruption on the other type of keys, such as
dmc-stat-sk-ind-cpa+ to indicate partially static IND-security with adaptive challenges, dynamic corruption of
ekey, and static corruption of skey.
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and sample ζ1, ζ2, ζ3, ζ4, S, U, V, T, D,E
$← (Z∗

q)
n where S = (s1, . . . , sn), U = (u1, . . . , un), V =

(v1, . . . , vn), T = (t1, . . . , tn), D = (d1, . . . , dn), and E = (e1, . . . , en). Sample θ1, . . . , θn
$← Z∗

q

such that
∑n

i=1 θi = 0 and for i ∈ [n] let pi, qi, αi, γi, γ
′
i

$← Zq satisfy

piαi = ζ1 qiγi = ζ2 qiαi = ζ3 piγ
′
i = ζ4

We set the public parameters to be (J⟨E,1⟩K1 , J⟨D,1⟩K2) . Sample ϵ, δ
$← Zq and generate

random n-out-of-n secret sharings (ϵi)i, (δi)i of ϵ, δ so that
∑n

i=1 ϵi = ϵ,
∑n

i=1 δi = δ. Output
the secret keys ski and the encryption keys eki as follows

ski := ( ϵi , siαih
∗
i,1 + siγih

∗
i,2, uiγ

′
ih

∗
i,1 + uiαih

∗
i,2,

vi
ti
h∗
i,3 + h∗

i,4, θiH
′(6)
i − eiH

′(8)
i , ϵhi,8 )

eki := ( δi , piH
(1)

i − (ζ1si + ζ4ui)H
(4)

i − diH
(7)

i , qiH
(2)

i − (ζ2si + ζ3ui)H
(4)

i , tihi,3 − vihi,4, hi,4,

H (6)

i , δh∗
i,7 )

where H
(k)
i denotes the k-th row of Hi for i ∈ [n] and 1 = (1, . . . , 1).

DKShare(ski, (tag-f, info(y)), yi): We assume that the function tag contains tag-f and public
information about info(y). The i-th parameter is yi := y[i]. We will use a full-domain hash
function H2 : Tag × Zn

q → G2. Parse

ski := (ϵi, siαih
∗
i,1 + siγih

∗
i,2, uiγ

′
ih

∗
i,1 + uiαih

∗
i,2,

vi
ti
h∗
i,3 + h∗

i,4, θiH
′(6)
i − eiH

′(8)
i , ϵhi,8) .

Compute H2(tag-f, info(y))→ Jκtag-f,yK2 and

ki,ipfe

= yi · (siαih
∗
i,1 + siγih

∗
i,2) + yi · (uiγ′ih∗

i,1 + uiαih
∗
i,2)

+yi(
vi
ti
h∗
i,3 + h∗

i,4) + (θiH
′(6)
i − eiH

′(8)
i ) · Jκtag-f,yK2

= (siyiαi + uiyiγ
′
i, siyiγi + uiyiαi,

vi
ti
yi, yi, 0, κtag-f,yθi, 0,−eiκtag-f,y )H∗

i

e(ϵi · J⟨E,1⟩K1 , Jκtag-f,yK2) = Jϵi⟨E,1⟩κtag-f,yKt
where J⟨E,1⟩K1 is public. Output dktag-f,i := (ki,ipfe, ϵ · hi,8, Jϵi⟨E,1⟩κtag-f,yKt ).

DKeyComb(dktag-f,i, tag-f,y): Output ⊥ if there is any incoherence among the dktag-f,i. Else, let
dktag-f,i := (ki,ipfe, ϵ · hi,8, Jϵi⟨E,1⟩κtag-f,yKt).
Compute Jϵ⟨E,1⟩κtag-f,yKt =

∑n
i=1 Jϵi⟨E,1⟩κtag-f,yKt and output

dktag-f,y := ((ki,ipfe, ϵ · hi,8 )i∈[n], Jϵ⟨E,1⟩κtag-f,yKt ) .

Enc(eki, tag, xi): Parse

eki := (δi, piH
(1)

i − (ζ1si + ζ4ui)H
(4)

i − diH
(7)

i , qiH
(2)

i − (ζ2si + ζ3ui)H
(4)

i , tihi,3 − vihi,4, hi,4,

H (6)

i , δ · h∗
i,7)

and compute H1(tag)→ (JωK1 , Jω′K1) ∈ G2
1; and sample ri

$← Zq. Compute

ci,ipfe = (piH
(1)

i − (ζ1si + ζ4ui)H
(4)

i − diH
(7)

i ) · JωK1 + (qiH
(2)

i − (ζ2si + ζ3ui)H
(4)

i ) · Jω′K1
+ri · (tihi,3 − vihi,4) + xihi,4 +H (6)

i JωK1
= (ωpi, ω′qi, riti,−(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi − rivi, 0, ω, −diω, 0 )Hi

e(JωK2 , δi · J⟨D,1⟩K2) = Jδi⟨D,1⟩ωKt
where J⟨D,1⟩K2 comes from the public parameters.
Output cttag,i := (ci,ipfe, δ · h∗

i,7, Jδi⟨D,1⟩ωKt ).
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Dec(dktag-f,y, c): Parse

dktag-f,y = ((ki,ipfe, ϵ · hi,8 )i, Jϵ⟨E,1⟩κtag-f,yKt );

c = (ci,ipfe, δ · h∗
i,7, Jδi⟨D,1⟩ωKt )

n
i=1

Compute Jδ⟨D,1⟩ωKt =
∑n

i=1 Jδi⟨D,1⟩ωKt and

JoutKt =
∑n

i=1

(
(cttag,i + ϵ · hi,8 )× (ki,ipfe + δ · h∗

i,7 )
)
+ Jϵ⟨E,1⟩κtag-f,yKt + Jδ⟨D,1⟩ωKt .

Finally, compute the discrete logarithm and output the small value out.

The correctness of the scheme is verified by:

JoutKt

=
n∑

i=1

(
(ki,ipfe + δ · h∗

i,7)× (cttag,i + ϵ · hi,8)
)
+ Jϵ⟨E,1⟩κtag-f,yKt + Jδ⟨D,1⟩ωKt

=

n∑
i=1


(siyiαi + uiyiγ

′
i, siyiγi + uiyiαi,

vi
ti
yi, yi,

0, κtag-f,yθi, δ,−eiκtag-f,y)H∗
i

×
(ωpi, ω′qi, riti,−(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi − rivi,

0, ω,−diω, ϵ)Hi


+ Jϵ⟨E,1⟩κtag-f,yKt + Jδ⟨D,1⟩ωKt

(∗)
=

n∑
i=1

q
ωζ1siyi + ωζ4uiyi + ω′ζ2siyi + ω′ζ3uiyi + θiωκtag-f,y

y
t

+

n∑
i=1

q
(−(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi) · yi

y
t

+

n∑
i=1

q
(−(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi) · yi

y
t

= J⟨x,y⟩Kt .

where the equality (∗) comes from system (5). We recall that (θi)i∈[n] is a secret sharing of 0.

Security. We prove the one-time static security of our DMCFE scheme in the ROM, where
the full-domain hash functions are modeled as random oracles, the sets of corrupted clients
Cekey as well as Cskey must be sent up front (static corruption), while the challenges (x∗

0,x
∗
1)

can be adaptively chosen (adaptive challenge). We note that we can achieve a better level of
security in our concrete instantiation compared to the generic transformation. On one hand,
our transformation follows the same blueprint in the work by Chotard et al. [CDSG+20], which
is the most relevant to our DMCFE setting. We apply a layer of All-or-Nothing Encapsulation
(AoNE) to our ciphertext and key components, which ensures that the orignal key/ciphertext
components can be recovered only when all parts are gathered. Our concrete DMCFE in Section 6
builds the AoNE directly by combining one-time pad (OTP) and a random oracle (RO). Then,
the programmability of the RO helps us circumvent the problem of adaptive queries. While
programming the RO, we indeed exploits in a non-blackbox manner the OTP as a summation in
Z∗
q to accumulate a secret sharing of 0 on the honest parts (known in advance thanks to static

corruption).

Theorem 19. Let E = (Setup,DKShare,DKeyComb,Enc,Dec) be the DMCFE constructed in
Section 6.1. Then, E is one-time statically IND+-secure in the ROM following the security model
in Definition 18 if the SXDH and DBDH assumptions hold for G1 and G2. More specifically,
let n denote the dimension for inner-products, Q1, Q2 denote the maximum number of random
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oracle (RO) queries to H1,H2 and K denote the total number of functional key queries. For
any one-time challenge ppt adversary A against E with static corruption of secret keys and
encryption keys, we have the following bound:

Advdmc-stat-1chal+
E,F IP,A (1λ) ≤ (K + 1)AdvDBDH

G1,G2
(1λ) + (3 + 2Q1 +K)AdvSXDH

G1,G2
(1λ) +

Q2
2

2q
.

Details are presented in the appendix C.3.
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CDG+18b. Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David Pointcheval.
Multi-client functional encryption with repetition for inner product. Cryptology ePrint Archive,
Report 2018/1021, 2018. https://eprint.iacr.org/2018/1021.
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A Supporting Materials - Additional Definitions

A.1 Decisional Separation Diffie-Hellman (DSDH) Assumption

Definition 20. In a cyclic group G of prime order q, the Decisional Separation Diffie-
Hellman (DSDH) problem is to distinguish the distributions

D0 = {(x, y, J1K , JaK , JbK , Jab+ xK)} D1 = {x, y, (J1K , JaK , JbK , Jab+ yK)}

for any x, y ∈ Zq, and a, b
$← Zq. The DSDH assumption in G assumes that no ppt adversary

can solve the DSDH problem with non-negligible probability.

A.2 Dual Pairing Vector Spaces

Basis changes. In this work, we use extensively basis changes over dual orthogonal bases of
a DPVS. We again use GN

1 as a running example. Let (A,A∗) be the dual canonical bases of
(GN

1 ,GN
2 ). Let (U = (ui)i,U

∗ = (u∗
i )i) be a pair of dual bases of (GN

1 ,GN
2 ), corresponding to an

invertible matrix U ∈ ZN×N
q . Given an invertible matrix B ∈ ZN×N

q , the basis change from U
w.r.t B is defined to be B := B ·U, which means:

(x1, . . . , xN )B =
N∑
i=1

xibi = (x1, . . . , xN ) ·B = (x1, . . . , xN ) ·B ·U

= (y1, . . . , yN )U where (y1, . . . , yN ) := (x1, . . . , xN ) ·B .

Under a basis change B = B ·U, we have

(x1, . . . , xN )B = ((x1, . . . , xN ) ·B)U ; (y1, . . . , yN )U =
(
(y1, . . . , yN ) ·B-1

)
B

.

The computation is extended to the dual basis change B∗ = B′ ·U∗, where B′ =
(
B-1

)⊤
:

(x1, . . . , xN )B∗ =
(
(x1, . . . , xN ) ·B′)

U∗ ; (y1, . . . , yN )U∗ =
(
(y1, . . . , yN ) ·B⊤

)
B∗

.

In can be checked that (B,B∗) remains a pair of dual orthogonal bases. When we consider a basis
change B = B ·U, if B = (bi,j)i,j affects only a subset J ⊆ [N ] of indices in the representation
w.r.t basis U, we will write B as the square block containing (bi,j)i,j for i, j ∈ J and implicitly
the entries of B outside this block is taken from IN .

https://eprint.iacr.org/2013/774
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B Supporting Materials - Constructions

B.1 Admissible Executions against DMCFE for Concrete Classes: Linear and
Quadratic Functions

The goal of this section is to demonstrate that the optimality of our admissibility in Definition 6
holds for both important concrete function classes: the inner-product class and the class of
quadratic functions. We will show that these two classes satisfy Definition 9, and at the same
time translating the admissible conditions of Definition 6 in these particular cases.

Admissibility for Inner-Product Function Class. In the context of this paper, we will
consider concrete constructions of DMCFE schemes for the class F IP = {Fy} and Fy :

(
Z∗
q

)n → Zq,
to compute inner products over Zq. Their security will be proven in the security model of
Definition 6 and in this section we translate the admissibility of adversaries against DMCFE
schemes for the class F IP. As discussed in Remark 4, the parameters of Fy ∈ F IP are simply the
vector y ∈ Zn

q . Hence the number of secret keys and of encryption keys are equal to n. We prove

the following claim on the efficient decidability and fixed-component indistinguishability of F IP,
using the linearity of inner products over Zq. These admissibility conditions will be crucially
used in the proof of security for our constructions in Section 5.1 and Section 6.

Theorem 21. Let λ ∈ N and we define F IP = {Fy} where Fy :
(
Z∗
q

)n → Zq w.r.t λ. Then, the

class F IP is fixed-component distinguishable with efficiently decidable admissibility.

Proof. Let Hskey,Hekey be the sets of honest clients considered in Finalize in Figure 1 and let
Cskey, Cekey be their complementary sets of corrupted clients. We consider the challenge messages
(x∗

0,x
∗
1) and a functional key corresponding to y ∈ Zn

q , under relation (4) in Definition 6. We
have to interpret the constraints in the particular case of inner products. First of all, for all
i ∈ Cskey∪Cekey, independent of the queries to LoR for the challenges (x∗

0,x
∗
1) orDKeyGenShare

for y, an admissible adversary can use eki or ski to craft their own ciphertext or key components.
We emphasize that the order of ciphertext or key queries, for which the adversary is supposed to
get the whole n components, and the corruption the clients over eki or ski, can be arbitrary.

During Finalize, we take into account all deducible challenge messages and functions. Let
C := Cskey ∪ Cekey and H := [n] \ C. In particular, the functional key allows decrypting the
challenge ciphertext and it must be the case that ⟨∆x,y⟩ = 0, where ∆x := x∗

0 − x∗
1 for the

initial (x∗
0,x

∗
1) and y is an inner-product function queried to DKeyGenShare. For b ∈ {0, 1},

we define x(b)

ekey := (x∗
b [i] : i ∈ Hekey) and let (z(0), z(1)) be an arbitrary pair of vectors deducible

from (x(0)

ekey,x
(1)

ekey). On the other hand, let G be a function with parameters yG deducible from
yskey := (y[i] : i ∈ Hskey). We consider admissible adversaries, i.e. ⟨∆z,yG⟩ = 0 for all (z(0), z(1))
and all yG. Expanding the formula of ⟨∆z,yG⟩ by i gives:

0 = ⟨∆z,yG⟩

=
∑
i∈H

∆x[i]y[i] +
∑

i∈(Cskey\Cekey)

∆x[i]yG[i]

+
∑

i∈Cekey\Cskey

(z(0)[i]− z(1)[i]) · y[i] +
∑

i∈Cekey∩Cskey

(z(0)[i]− z(1)[i]) · yG[i] .

We notice that this must hold for every deducible function G that computes the inner
products with yG and every deducible (z(0), z(1)), which makes the above imply

– For every i ∈ Cskey \ Cekey,it must hold that ∆x[i] = 0 because yG[i] is fully controlled by
the adversary even after receiving the functional key. Otherwise the adversary can query
(x∗

0[i],x
∗
1[i], tag) to LoR where x∗

0[i] ̸= x∗
1[i], and deduce yG so that the linear combination∑

i∈(Cskey\Cekey)∆x[i]yG[i] is not 0, while setting the rest to 0.
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– For every i ∈ Cekey \ Cskey, it must hold that (z(0)[i]− z(1)[i]) · y[i] = 0 because z(0)[i]− z(1)[i] is
fully controlled by the adversary even after receiving the challenge. Otherwise, the adversary
can makes queries (x∗

0[i],x
∗
1[i], tag) to LoR for i ∈ Hekey, then deduce (z(0), z(1)), so that∑

i∈Cekey\Cskey(z
(0)[i]− z(1)[i]) ·y[i] ̸= 0 for some functional key query of y while setting the rest

to 0, which violates the 0-equality. Since (z(0)[i], z(1)[i]) are deducible coordinates, they can
be the original challenge coordinates (x∗

0[i],x
∗
1[i]).

– For every i ∈ Cekey ∩ Cskey, it must hold that (z(0)[i] − z(1)[i]) · yG[i] = 0 because both the
input’s term as well as the function’s term are fully controlled by the adversary. This gives
x∗
0[i] = x∗

1[i] in particular, when we consider the original challenge coordinates and the
function having yG[i] = 1.

– Finally, we must also have
∑

i∈H∆x[i]y[i] = 0.

In the end, in the case of DMCFE for inner products, the condition in Definition 6 for any
admissible attack in the security game is expressed as:

1. For all (tag-f,y) ∈ Q,
∑

i∈H∆x[i]y[i] = 0 where ∆x[i] = x∗
0[i

∗]− x∗
1[i

∗].

2. For all i∗ ∈ Cekey \ Cskey, either x∗
0[i

∗] = x∗
1[i

∗] = 0 or y[i∗] = 0.

3. For all i∗ ∈ Cskey, x∗
0[i

∗] = x∗
1[i

∗].

It is clear that these conditions can be efficiently checked during Finalize.

Next, it can be verified that F IP is fixed-component distinguishable. We consider two cases:
the zero function F0 and non-constant functions. First of all, the parameter vector of F0

is 0 = (0, . . . , 0) and by setting Hfunc = {2, 3, . . . , n}, the function G having parameters
yG = (1, 0, . . . , 0) is deducible from 0func = (0)i∈Hfunc

and is fixed-component distinguishable. An
example of a triple that distinguishes G is Hinp = {1} and x(0)

inp[1] ̸= x(1)

inp[1] are some fixed values,

with a deducible pair (z(0), z(1)) where x(0)

inp[1] = z(0)[1] ̸= z(1)[1] = x(1)

inp[1], z
(b)[i] = z(1−b)[i] = 0 for

all i ≥ 2, b ∈ {0, 1}.
Let Fy(·) = ⟨·,y⟩ be a non-constant function in F IP, then there exists I ⊆ [n] such that

y[i] ̸= 0 for i ∈ I. A triple that distinguishes Fy contains Hinp = I. We then sample uniformly

at random, for i ∈ I, x(1)

inp[i]
$← Zq. Afterwards, we choose i∗ ∈ I and for i ∈ I \ {i∗}, sample

∆x[i]
$← Zq and define x(0)

inp[i] := x(1)

inp[i]−∆x[i]. Then, we sample uniformly at random a nonzero

z
$← Z∗

q and solve for ∆x[i∗] from the equation

z −
∑

i∈I\{i∗}

∆x[i]y[i] = ∆x[i∗]y[i∗] .

Since i∗ ∈ I, y[i∗] ̸= 0 and there is a unique solution for ∆x[i∗] that can be efficiently found.
The witness is (z(0), z(1)) where z(b)[i] = x(b)

inp[i] for all i ∈ Hinp = I, z(b)[i] = z(b)[i] = 0 for all

i ∈ [n] \ I, b ∈ {0, 1}. This concludes the fixed-component distinguishability of F IP over Zq. ⊓⊔

Remark 22. As we see in Remark 15, the admissibility as per Definition 6 is optimal for F IP

over Zq and Theorem 23 shows the same holds for F IP,poly
B,B′ . Sections 5 and 6 give constructions of

DMCFE for F IP,poly
B,B′ that are finally secure in the security model under the translated admissibility,

demonstrating the feasibility of our security notion from Definition 7.

Quadratic Functions is Fixed-component distinguishable, with Efficiently Decidable
Admissibility. We show that the class Fquad of quadratic functions fc(x) := ⟨x ⊗ x, c⟩ for
x ∈ Zn

q as studied in [AGT21a], where the function’s parameters are c = (ci,j)i,j∈[n] ∈ Zn2

q , is
fixed-component distinguishable, following Definition 9, thanks to the fact that we can solve
quadratic equations modulo a prime efficiently. The case of the constant function, which maps
every input to 0, can be handled similarly as in the case of inner-products. Given a non-constant
fc ∈ Fquad, in particular fc is non-zero, there must exists i ∈ [n] such that the coefficients
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(ci,j)j ̸=i, (cℓ,i)ℓ̸=i, ci,i are not all zeros. We first sample x[j]
$← Z∗

q uniformly at random, for all
j ̸= i. Then, we solve the following quadratic equation for x′[i], for some z ̸= 0:

z = (x′[i]− x[i]) ·

∑
j ̸=i

x[j]ci,j +
∑
ℓ̸=i

x[ℓ]cℓ,i

+ ci,i · (x′[i]2 − x[i]2) . (6)

Thanks to the choice of i, i.e. the coefficients (ci,j)j ̸=i, (cℓ,i)ℓ ̸=i, ci,i are not all zeros, and the

fact that x[j]
$← Z∗

q for all j ̸= i, with probability 1/2 the equation (6) will have a solution
x′[i] that can be found efficiently using Tonelli-Shanks algorithm. In the end, setting x′ :=
(x[1], . . . ,x[i−1],x′[i],x[i+1], . . . ,x[n]) verifies fc(x) ̸= fc(x

′). Hence, a triple that distinguishes
fc is (x,x′,Hekey := [n]) and its witness is (z(0), z(1)) = (x,x′).

We now move on to the translation of the admissibility condition in Definition 6 in the case
of Fquad. During Finalize, we take into account all deducible challenge messages and functions.
Let Cekey ⊂ [n] and Hekey := [n] \ Cekey. Let Cskey ⊂ [n] × [n] and Hskey := [n] × [n] \ Cskey. In
particular, the functional key allows decrypting the challenge ciphertext and it must be the
case that ⟨∆x, c⟩ = 0, where ∆x := x∗

0 ⊗ x∗
0 − x∗

1 ⊗ x∗
1 for the initial (x∗

0,x
∗
1) and c is the

parameter vector of a quadratic function fc queried to DKeyGenShare. For b ∈ {0, 1}, we
define x(b)

ekey := (x∗
b [i] : i ∈ Hekey) and let (z(0), z(1)) be an arbitrary pair of vectors deducible from

(x(0)

ekey,x
(1)

ekey). On the other hand, let G be a function deducible from cskey := (ci,j : (i, j) ∈ Hskey),

having parameters cG = (cGi,j)i,j ∈ Zn2

q . We consider admissible attacks in the security game, i.e.

⟨∆z, cG⟩ = 0 for all (z(0), z(1)) and all cG. Expanding the formula of ⟨∆z, cG⟩ gives:

0 = ⟨∆z, cG⟩

=
∑

i,j∈Cekey

(z∗0[i]z
∗
0[j]− z∗1[i]z

∗
1[j])c

G
i,j +

∑
i,j∈Hekey

(i,j)/∈Cskey

(x∗
0[i]x

∗
0[j]− x∗

1[i]x
∗
1[j])ci,j

+
∑

i,j∈Hekey

(i,j)∈Cskey

(x∗
0[i]x

∗
0[j]− x∗

1[i]x
∗
1[j])c

G
i,j +

∑
i∈Cekey

∑
j∈Hekey

(z(0)[i]x∗
0[j]− z(1)[i]x∗

1[j])c
G
i,j

+
∑

i∈Hekey

∑
j∈Cekey

(x∗
0[i]z

(0)[j]− x∗
1[i]z

(1)[j])cGi,j .

We are using the fact that if (i, j) /∈ Cskey then cGi,j = ci,j . We notice that this must hold for

every deducible function G that computes the quadratic function with cG and every deducible
(z(0), z(1)), which makes the above imply

– First of all, for all i, j ∈ Hekey such that (i, j) ∈ Cskey, because cGi,j can be fully changed
by the adversary even after receiving the functional key, it must hold that x∗

0[i]x
∗
0[j] =

x∗
1[i]x

∗
1[j] ∀ i, j ∈ Hekey, (i, j) ∈ Cskey.

– For each j ∈ Hekey, if there exists i ∈ Cekey such that (i, j) ∈ Cskey (resp. (j, i) ∈ Cskey), then
it must hold that (z(0)[i]x∗

0[j] − z(1)[i]x∗
1[j])c

G
i,j = 0 since the adversary can put whatever

he wants into (z(0)[i], z(1)[i], cGi,j) even after the querying phase. This particularly makes
x∗
0[i]x

∗
0[j] = x∗

1[i]x
∗
1[j] as we can set z(0)[i], z(1)[i] to the original challenge coordinates and

cGi,j = 1.

– For every i, j ∈ Cekey such that (i, j) ∈ Cskey, the admissibility dictates that we need to
restrain on individual pairs (i, j), because the adversary can manipulate either the challenge
part or the key parts or both otherwise. The constraint we must employ is for every such pair
(i, j), we have (z∗0[i]z

∗
0[j]− z∗1[i]z

∗
1[j])c

G
i,j = 0. This particularly makes x∗

0[i]x
∗
0[j] = x∗

1[i]x
∗
1[j]

as we can set cGi,j = 1 and z(0)[i], z(1)[i] to the original challenge coordinates.
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– Finally, we must also impose∑
i,j∈Hekey

(i,j)/∈Cskey

(x∗
0[i]x

∗
0[j]− x∗

1[i]x
∗
1[j])ci,j = 0 .

These conditions can be checked efficiently, hence the class Fquad has efficiently decidable admis-
sibility. Moreover, we ahve also translated the admissibility condition as defined in Definition 6
for the class Fquad, implying that it has efficient decidability. As a result, the optimality of our
admissibility also holds for Fquad over Zq following Theorem 12.

Optimality in the Case of Inner Products in Polynomially Bounded Range. In our
concrete DDH-based construction of DMCFE for inner products in Section 5.1 and Section 6, our
functionality is not for inner products over Zn

q set up w.r.t λ ∈ N, but only for bounded vectors
such that the inner product evaluation is polynomially large. More specifically, we name this
class F IP,poly

B,B′ in which any function fy : x 7→ ⟨x,y⟩ receives as inputs x and has parameters y
such that ∥x∥∞ < B and ∥y∥∞ < B′, where B,B′ = poly(λ) ∈ N are polynomials. The concrete
admissibility (see Remark 15) is still the same because we are still computing inner products.

Below wse prove that the admissibility as per Definition 6 is optimal for F IP,poly
B,B′ .

Theorem 23. Let λ ∈ N and F IP,poly
B,B′ be the function class to compute inner products in ranges

parametrized by B,B′. Then, our admissibility condition as defined in Definition 6 is optimal
for F IP,poly

B,B′ .

Proof. Without loss of generality, we consider the one-challenge notion. We need to prove that:
there exists a ppt distinguisher S so that for any non-admissible attack of an adversary A against
some DMCFE E for F IP,poly

B,B′ in a security experiment ExprE,F IP,poly

B,B′ ,A given in Figure 1, we have

Pr
[
S(Q,QEnc, Cskey, Cekey, {(x∗

0,x
∗
1, tag)}, {(x, tag(k))}) = b : b←Chall(randChall)

]
≥ 1

poly(λ)
.

Any non-admissible attack will make one of the following hold:

1. There exists (tag-f,y) ∈ Q s.t
∑

i∈H∆x[i]y[i] ̸= 0.
2. There exists i∗ ∈ Cekey \ Cskey s.t (x(0)[i∗]− x(1)[i∗])y[i∗] ̸= 0.
3. There exists i∗ ∈ Cskey s.t x(0)[i∗] ̸= x(1)[i∗].

We describe the distinguisher S as follows and specify the strategy for each case:

1. The distinguisher S parses

(Q,QEnc, Cskey, Cekey, {(x∗
0,x

∗
1, tag)}, {(x, tag(k))})

then use Eabs and (Q,QEnc, {(x∗
0,x

∗
1, tag)}) for abstracting the key components to obtain

{(dkabstag-f,F,j)j∈[m]}(tag-f,F )∈Q, the challenge ciphertext components to obtain (ctabstag,i)i∈[n] for

each {(x∗
0,x

∗
1, tag)}, and the encryption responses to obtain (ctabs,(k)i )i∈[n]. If there are cor-

rupted keys skj or eki queried by A, they will also be replaced by their abstracted counterparts

skabsj or ekabsi . In the following S only needs the abstract DMCFE for F IP,poly
B,B′

Eabs = (Setupabs,DKShareabs,DKeyCombabs,Encabs,Decabs)

that satisfies the correctness requirement, no matter what the details of the concrete E are.
2. If there exists (tag-f,y) ∈ Q such that ⟨x∗

0,y⟩ ≠ ⟨x∗
1,y⟩, S combines the key components of

(tag-f,y), decrypts the challenge ciphertext components, and outputs 1 if and only if the result
is ⟨x∗

1,y⟩. All algorithms come from Eabs = (Setupabs,DKShareabs,DKeyCombabs,Encabs,Decabs).
Else, in the following we assume that ⟨x∗

0,y⟩ = ⟨x∗
1,y⟩ for all (tag-f,y) ∈ Q.
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3. If case 1 happens:
– Let (tag-f,y) ∈ Q be the query such that

∑
i∈H∆x[i]y[i] ̸= 0.

– S uses the corrupted secret keys (ski)i∈Cskey and the honest component (dktag-f,i)i∈Hskey
to

compute the partial functional keys (d̃ktag-f,i)
n
i=1 for ỹ where (ỹ[i])i∈Hskey

:= (y[i])i∈Hskey

and (ỹ[i])i∈Cskey := 0. The key derivation algorithm is the abstract algorithm DKShareabs.
– S uses the corrupted encryption keys (eki)i∈Cekey and the honest challenge ciphertext

components (cttag,i)i∈Hekey
to compute the ciphertext components (c̃ttag,i)

n
i=1 for x̃ where

implicitly (x̃[i])i∈Hekey
:= (x∗

b [i])i∈Hekey
and (x̃[i])i∈Cekey := 0. The encryption is done using

the abstract algorithm Encabs.
– By using DKeyCombabs to combine the newly generated key components (d̃ktag-f,i)

n
i=1 and

Decabs to decrypt the newly generated challenge ciphertext (c̃ttag,i)i∈[n], S outputs 1 if
and only if the result is equal to

∑
i∈H x∗

1[i]y[i].
4. If case 2 happens:

– If case 1 also happens, S operates as above.
– Else, let i∗ ∈ Cekey \ Cskey s.t (x(0)[i∗]− x(1)[i∗])y[i∗] ̸= 0.
– S uses the corrupted encryption keys (eki)i∈Cekey\{i∗} and the honest challenge ciphertext
components (cttag,i)i∈Hekey

as well as cttag,i∗ to compute the ciphertext components
(c̃ttag,i)

n
i=1 for x̃ where implicitly (x̃[i])i∈Hekey

:= (x∗
b [i])i∈Hekey

, (x̃[i])i∈Cekey\{i∗} := 0, and

implicitly x̃[i∗] := x∗
b [i

∗]. The encryption is done using the abstract algorithm Encabs.
– S uses the corrupted secret keys (ski)i∈Cskey and the honest component (dktag-f,i)i∈Hskey

to

compute the partial functional keys (d̃ktag-f,i)
n
i=1 for ỹ where (ỹ[i])i∈Hskey

:= (y[i])i∈Hskey

and (ỹ[i])i∈Cskey := 0. We notice that implicitly ỹ[i∗] := y[i∗] because i∗ ∈ Cekey \ Cskey.
The key derivation algorithm is the abstract algorithm DKShareabs.

– By using DKeyCombabs to combine the newly generated key components (d̃ktag-f,i)
n
i=1 and

Decabs to decrypt the newly generated challenge ciphertext (c̃ttag,i)i∈[n], S outputs 1 if
and only if the result is equal to x∗

1[i
∗]y[i∗].

5. If case 3 happens:
– If case 1 or case 2 also happens, S operates as above.
– Else, let i∗ ∈ Cskey s.t x∗

0[i
∗] ̸= x∗

1[i
∗].

– S uses the corrupted secret keys (ski)i∈Cskey\{i∗} and the honest component (dktag-f,i)i∈Hskey

to compute the partial functional keys (d̃ktag-f,i)
n
i=1 for ỹ where (ỹ[i])i∈Hskey

:= (y[i])i∈Hskey

and (ỹ[i])i∈Cskey\{i∗} := 0. If y[i∗] = 0 the distinguisher S sets ỹ[i∗] = z for some B′ > z ̸= 0

and uses ski∗ to compute d̃ktag-f,i∗ . The key derivation algorithm is the abstract algorithm
DKShareabs.

– S uses the corrupted encryption keys (eki)i∈Cekey\{i∗} and the honest challenge ciphertext
components (cttag,i)i∈Hekey

as well as cttag,i∗ to compute the ciphertext components
(c̃ttag,i)

n
i=1 for x̃ where implicitly (x̃[i])i∈Hekey

:= (x∗
b [i])i∈Hekey

, (x̃[i])i∈Cekey\{i∗} := 0, and

implicitly x̃[i∗] := x∗
b [i

∗]. The encryption is done using the abstract algorithm Encabs.
– By using DKeyCombabs to combine the newly generated key components (d̃ktag-f,i)

n
i=1 and

Decabs to decrypt the newly generated challenge ciphertext (c̃ttag,i)i∈[n], S outputs 1 if
and only if the result is equal to x∗

1[i
∗]y[i∗].

The condition in step 2 can be checked efficiently as A is ppt and Q must thus be of polynomial
size. It can be verified that in all three cases the distinguisher S outputs 1 if and only if the
attack corresponds to an execution in which the challenge picks 1 as the challenge bit, for any
DMCFE scheme E ′. The proof is completed. ⊓⊔

B.2 Generic DMCFE for Inner-Products in the Stronger Model against Incomplete
Queries

In previous works, one can transform an MIFE/MCFE that is secure against only complete queries
to an MIFE/MCFE that is secure against also incomplete queries, e.g. see [AGRW17, CDG+18b,
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LT19, ABKW19, ABG19]. All transformations are generic. Both the works of [CDG+18b,
ABKW19] need RO for their compilers. The transformation of [ABKW19, Section 4.2], however,
does not support tags. The works [LT19] and [ABG19] independently provides compilers in
the standard model that rely on PRF and symmetric-key encryption. The compiler in [LT19] is
specified for MCFE and they rely on PRF with a special multi-instance security; The security
model employed for DMCFE therein only constrains complete queries for the challenge ciphertexts
and the DMCFE scheme of [LT19] achieves adaptive security under static corruption. The compiler
in [ABG19] works also for DMCFE but their instantiation relies on single client FE with a mildly
special property, namely key derivation. The DMCFE from [ABG19] achieves adaptive security
under adaptive corruption. In the construction of Dynamic Decentralized Functional Encryption
(DDFE) in [CDSG+20], of which DMCFE can also be seen as a particular case, the authors can
achieve selective security against incomplete queries under static corruption using a primitive
called All-or-Nothing Encapsulation (AoNE). All these works are for (D)MCFE in the security
model firstly proposed in [CDG+18b]. We begin by recall the necessary building blocks for the
transformation.

All-or-Nothing Encapsulation (AoNE). The notion of AoNE is a particular functionality of
Dynamic Decentralized Functional Encryption (DDFE) introduced by Chotard et al. [CDSG+20].
In the transformation of [CDG+18b, Section 5.2], AoNE appears under the name Secret Sharing
Layer (SSL). Let PK denote a public key space. We recall the syntax of AoNE below:

– AoNE is a quadruple (AoNE.Setup,AoNE.KeyGen,AoNE.Enc,AoNE.Dec) defined over a key
space K and a message spaceM.

– The procedure AoNE.Setup(1λ) receives a security parameter and outputs the public parame-
ters pp. The key space is defined as K := ∅ and the message spaceM := {0, 1}L×PKn×Tag,
where L = L(λ) and n = n(λ) are functions. We denote by List-PubKey(n) ∈ PKn the list of
n public keys for n senders, equipped with some ordering.

– The procedure AoNE.KeyGen(pp) outputs a public key pk and its associated secret key skpk.
– The procedure AoNE.Enc(skpk,m) parses m = (xpk, List-PubKey(n), tagaone) ∈M. Then, the
procedure outputs (pk,m).

– The procedure AoNE.Dec(ct) receives as input a list ct = (ctpk)pk of ciphertexts indexed by
public keys pk ∈ PK. The procedure parses ctpk := (pk,mpk) for each ctpk. Finally, it outputs
either (pk, xpk)pk or ⊥.

We recall in Appendix B.3 the definitions for correctness and security of AoNE, which will be
needed for our transformation.

The transformation. Let E = (Setup,DKShare,DKeyComb,Enc,Dec) be a DMCFE, AoNE =
(AoNE.Setup,AoNE.KeyGen,AoNE.Enc,AoNE.Dec) be an all-or-nothing encapsulation. We de-
duce a new DMCFE scheme E (+) as follows:

Setup(+)(1λ): Execute ((ski, eki)
n
i=1)← Setup(1λ). Then, set up pp← AoNE.Setup(1λ) and for

each i ∈ [n], generate (pkcipaone,i, sk
cip
aone,i) and (pkkeyaone,i, sk

key
aone,i), which are AoNE keys, using

AoNE.KeyGen(pp). Output the secret keys ski and the encryption keys eki as follows{
sk(+)

i := (ski, sk
key
aone,i)

ek(+)

i := (eki, sk
cip
aone,i)

.

We suppose that List-PubKeycip(n) =
(
ekcipaone,i

)n

i=1
and List-PubKeykey(n) =

(
ekkeyaone,i

)n

i=1
are

in the public parameters of the scheme.
DKShare(+)(sk(+)

i , tag-f, F ): Parse sk(+)

i := (ski, sk
key
aone,i) and compute dktag-f,F,i←DKShare(ski, tag-f, F ).

Then, compute

dk(+)

tag-f,F,i = AoNE.Enc(skkeyaone,i, (dktag-f,F,i, List-PubKey
key(n), tag-f)) .

Output dk(+)

tag-f,F,i.
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DKeyComb(+)((dk(+)

tag-f,F,i)
n
i=1, tag-f, F ): Run AoNE.Dec((dk(+)

tag-f,F,i)
n
i=1) = (dktag-f,F,i)

n
i=1. Then,

compute and output dktag-f,F = DKeyComb((dktag-f,F,i)
n
i=1, tag-f, F ).

Enc(+)(ek(+)

i , xi, tag): Parse ek(+)

i = (eki, sk
cip
aone,i) and compute cttag,i← Enc(eki, xi, tag). Then,

compute
ct(+)

tag,i = AoNE.Enc(skcipaone,i, (cttag,i, List-PubKey
cip(n), tag)) .

Output ct(+)

tag,i.

Dec(+)(dktag-f,F , c
(+)

tag): Parse c(+)

tag = (ct(+)

tag,i)
n
i=1. Run AoNE.Dec((ct(+)

tag,i)
n
i=1) = (cttag,i)

n
i=1. Finally,

compute and output Dec(dktag-f,F , (cttag,i)
n
i=1).

Correctness. The correctness of E (+) follows that of AoNE and E .

Security. The security of this transformation in the case of MCFE is studied in [CDG+18b,
Theorem 12], where AoNE appears under the combination of Secret Sharing Layer (SSL) and
Symmetric Encryption schemes with one-time security and can be proven secure under DBDH
in the ROM. A concrete instantiation of AoNE following the same idea was presented in a recent
work by Chotard et al. [CDSG+20, Section 5.2].
Back to the IND-security of E (+), we can adapt the proofs in [CDSG+20, CDG+18b] to the case
of DMCFE. In [CDG+18b, Theorem 12] for the MCFE case, the authors perform a sequence of
hybrids on the challenge ciphertexts, which are indexed by tag, due to the fact that the AoNE is
applied on the ciphertexts of the underlying MCFE scheme. In our case, we will have to perform
in addition a similar sequence on the key components, which are indexed by tag-f, because we
are treating DMCFE schemes instead of MCFE schemes, and this can be done following the same
vein of [CDSG+20, Theorem 26]. Our new admissibility concerns only complete key and challenge
queries thus the argument on the AoNE layer does not resort to admissibility. In summary, we
can obtain the following:

Theorem 24 (Adapted from [CDSG+20, CDG+18b]). Suppose E be a DMCFE scheme
that is IND-secure following Definition 7. Suppose AoNE is an all-or-nothing encapsulation
scheme that is selectively statically IND-secure. Then, the DMCFE scheme E (+) is one-time
IND-secure following Definition 18, selectively in challenge messages with static corruptions on
both encryption and secret keys.

B.3 Correctness and Security of AoNE

Correctness. We require that for all x ∈ {0, 1}L and tagaone ∈ Tag, for all lists List-PubKey(n) ∈
PKn, we have AoNE.Dec((pk, (xpk, List-PubKey(n), tagaone))) = (List-PubKey(n), tagaone) and

AoNE.Dec((pk,mpk)pk∈List-PubKey(n))

=


(pk, xpk)pk∈List-PubKey(n)

if ∀pk ∈ List-PubKey(n) : mpk = (xpk, List-PubKey(n), tagaone)

⊥ otherwise

.

Security. We state below the security notion of AoNE, proposed in [CDSG+20], that is adapted
from DDFE where the former is an instance of the latter for a particular functionality.

Definition 25 (IND-CPA security for AoNE). An all-or-nothing encapsulation scheme

AoNE = (AoNE.Setup,AoNE.KeyGen,AoNE.Enc,AoNE.Dec)

for n senders over {0, 1}L ×PKn × Tag is IND-secure if for all ppt adversaries A, and for all
sufficiently large λ ∈ N, the following probability is negligible

Advind-cpaAoNE,A(1
λ) :=

∣∣∣∣Pr[Exprind-cpaAoNE,A(1
λ) = 1]− 1

2

∣∣∣∣ .
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Initialise(1λ)

b
$← {0, 1}

pp←AoNE.Setup(1λ)
Q := ∅, C := ∅, H := ∅
Return pp

LoR(i,m
(0)
i ,m

(1)
i , pki)

If there exists (pki, ski) in Q
Return AoNE.Enc(ski,m

(b)
i )

Else: Ignore

Enc(i,m, pki)

If there exists (pki, ski) in Q
Return AoNE.Enc(ski,m)

Else: Ignore

Corrupt(i, pki)

If there exists (pki, ski) in Q
C := C ∪ {i}
H := H \ {i}
Return ski

Else: Ignore

Finalise(b′)

If condition (∗) holds:
return 0

Else: return
(
b′

?
= b

)
NewHonest(i, pp)

If i ∈ H: Ignore
H := H ∪ {i}
(pki, ski)←AoNE.KeyGen(pp, i)
Q := Q∪ {(pki, ski)}
Return pki

Fig. 2: The security games Exprind-cpaAoNE,A(1
λ) for Definition 25. The condition (∗) in the game is

defined in Definition 25.

The security game Exprind-cpaAoNE,A(1
λ) is given in Figure 2.

Let the sets (C,Q,H) be the sets of corrupted clients, new participant queries, and honest

clients, in that order. The condition (∗) used by Exprind-cpaAoNE,A(1
λ) is true if there exists a list of

public key List-PubKey(n), there exist two lists of messages m(0) = ((pki,m
(0)

i ))pki and m(1) =

((pki,m
(1)

i ))pki such that
AoNE.Dec(m(0)) ̸= AoNE.Dec(m(1))

where for all i ∈ H, there exists a query LoR(i,m(0)

i ,m(1)

i , pki). The probability is taken over
the coins of algorithms and the choices of the adversary. Naturally, we can derive the selective
notion Advsel-ind-cpaAoNE,A (1λ) for the case where (m(0),m(1)) must be declared in advance, similarly the

static notion Advstat-ind-cpaAoNE,A (1λ) for which C must be sent up front.

C Supporting Materials - Deferred Proofs

C.1 Proof of Lemma 8

Lemma 8. Let E = (Setup,DKShare,DKeyComb,Enc,Dec) be a DMCFE scheme for the func-
tion class F . If E is one-time IND-secure, then E is IND-secure.

Proof. Suppose E is one-time IND-secure but not IND-secure. This means there exists a ppt
adversary A such that

Advdmc-ind-cpa
E,F ,A (1λ) :=

∣∣∣∣Pr[Exprdmc-ind-cpa
E,F ,A (1λ) = 1]− 1

2

∣∣∣∣
is non-negligible. We construct a ppt adversary B using a black-box access to A to break the
one-time IND-security of E . We note that this reduction preserves the incomplete/complete
constraint, that is, we restrict B to query all honest components if and only if we restrict A to
do the same. The adversary B works as follows:
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1. B first obtains pk from its one-time challenger and sends pk to A.
2. B chooses uniformly at random k ∈ [Q].

3. For all challenge ciphertext queries LoR(i, x
(0)
k,i , x

(1)
k,i , tag

∗
k): B make the queries to LoR to its

one-time challenger for tag∗k and transfer the responses to A.
4. For all challenge ciphertext queries LoR(i, x

(0)
ℓ,i , x

(1)
ℓ,i , tag

∗
ℓ ≠ tag∗k) where ℓ < k: B makes the

queries for x(0)

ℓ,i to Enc to its one-time challenger and transfer the responses to A.
5. For all challenge ciphertext queries LoR(i, x

(0)
ℓ,i , x

(1)
ℓ,i , tag

∗
ℓ ≠ tag∗k) where ℓ > k: B makes the

queries for x(1)

ℓ,i to Enc of its one-time challenger and transfer the responses to A.
6. For all Enc and DKeyGenShare queries by A, B relay them to its one-time challenger

and transfers the responses to A.
7. Finally, A outputs a bit b′. The adversary B outputs the same bit b′.

Let Q denote the number of challenge tags that are queried by A to B. We use a sequence of
hybrids H0,H1, . . . ,HQ between A and its IND-security challenger such that in Hk all LoR
queries for tag∗ℓ , where ℓ ≤ k, are answered by encrypting x(0)

ℓ,i and by encrypting x(1)

ℓ,i if ℓ > k.

We denote by Hk = 1 the event where the challenger outputs 1. We have 2 · Advdmc-ind-cpa
E,F ,A (1λ) =

|Pr[HQ = 1]− Pr[H0 = 1]|.
On the other hand, the advantage of B against the one-time IND-security experiment of E is

2 · Advdmc-ind-cpa-1chal
E,F ,B (1λ) = |Pr[Exprdmc-ind-cpa-1chal

E,F ,B (1λ) = 1 | b = 0]

− Pr[Exprdmc-ind-cpa-1chal
E,F ,B (1λ) = 1 | b = 1]|

=
1

Q
·

∣∣∣∣∣
Q∑

k=1

(
Pr[Exprdmc-ind-cpa-1chal

E,F ,B (1λ) = 1 | b = 0,B picks k]

−Pr[Exprdmc-ind-cpa-1chal
E,F ,B (1λ) = 1 | b = 1,B picks k]

) ∣∣∣∣∣
(∗)
≥ 1

Q
· |

Q∑
k=1

(Pr[Hk = 1]− Pr[Hk−1 = 1]) |

=
1

Q
· |Pr[HQ = 1]− Pr[H0 = 1]|

=
1

Q
· 2 · Advdmc-ind-cpa

E,F ,A (1λ)

where (∗) comes from the observation that conditioned on b = 0 (resp. b = 1) and B picks k,

Exprdmc-ind-cpa-1chal
E,F ,B (1λ) = 1 is identical to Hk = 1 (resp. Hk−1 = 1), where B is simulating the

challenger for A. Finally, we have Advdmc-ind-cpa
E,F ,A (1λ) ≤ Q · Advdmc-ind-cpa-1chal

E,F ,B (1λ) and because

Advdmc-ind-cpa
E,F ,A (1λ) is non-negligible, B is breaking the one-time IND-security of E with non-

negligible advantage. ⊓⊔

C.2 Proof of Theorem 16

Theorem 16. Let E = (Setup,DKShare,DKeyComb,Enc,Dec) be a DMCFE scheme for F IP

from Section 5.1 in a bilinear group (G1,G2,Gt, g1, g2, gt, e, q). Then, E is IND-secure with
static corruption of secret keys in the ROM if the SXDH assumption holds for G1 and G2. More
specifically, let n denote the dimension for inner-products and Q1, Q2 denote the maximum
number of random oracle (RO) queries to H1,H2 respectively. For any ppt adversary A against
E with static secret key corruption and one-time challenge, we have the following bound:

Advdmc-stat-sk-ind-cpa-1chal
E,F ,A (1λ) ≤ (3 + 2Q1) · AdvSXDH

G1,G2
(1λ) +

Q2
2

2q

https://orcid.org/0000-0002-3867-4209
https://orcid.org/0000-0003-1136-4064
https://orcid.org/0000-0002-6668-683X


Optimal Security Notion for DMCFE 33

and in the reduction there is an additive loss O(Q1 · tG1) in time, where tG1 is the cost for one
addition in G1.

Proof (Of Theorem 16). We give the sequence of games in Figure 3 and Figure 4. The changes
that make the transitions between games are highlighted in gray . The advantage of an adversary
A in a game Gi is denoted by

Adv(Gi) := |Pr[Gi = 1]− 1/2|

where the probability is taken over the random choices of A and coins of Gi. The full domain
hash function H1 : Tag→ G2

1 as well as the hash function H1 : Tag × Zn
q → Zq are modeled as

random oracles (RO). We denote by K the number of key queries, in the proof we omit the
indexing of keys for readability. We consider only admissible adversaries and recall that the
following must hold: 

∑
i∈H∆x[i]y[i] = 0 where H := Hekey ∪Hskey,

i∗ ∈ Cekey : either x(0)[i∗] = x(1)[i∗] or y[i∗] = 0,

i∗ ∈ Cskey : x(0)[i∗] = x(1)[i∗] .

(7)

Game G0: This is the security game Exprdmc-stat-sk-ind-cpa-1chal
E,F ,A (1λ). The order of ciphertext or key

queries, for which the adversary is supposed to get the whole n components, and the corruption
the clients over eki or ski can be arbitrary. The adversary will declare the sets Cskey of corrupted
secret keys ski at the beginning of the game. We have Advdmc-stat-sk-ind-cpa-1chal

E,F ,A (1λ) = Adv(G0).
Game G1: In this game we introduce a random multiple riτ of ri in the 5-th coordinate of all

ci,ipfe returned from LoR. The basis changes are performed at Setup for all i. This basis
change is computational and we will see below that we can write appropriately the vectors
from LoR so as to introduce riτ , while those from Enc stay normal. Given a DDH instance
(JaK1 , JbK1 , JcK1), where c− ab = τ is 0 or a random value in Zq, the basis change uses the
matrices:

Hi :=

[
1 ai

ti
0 1

]
3,5

H ′
i :=

(
H -1

i

)⊤
=

[
1 0

−ai
ti

1

]
3,5

Hi = Hi ·T; H∗
i = H ′

i ·T∗ .

Here we are using the random self-reducibility of DDH to obtain instances (JaiK1 , JbiK1 , JciK1)
for ci − aibi = τi is 0 or a uniformly random value in Zq. The vectors from LoR for the
corrupted i, if demanded by the adversary, can be written:

ci,ipfe = (r′itibi, ritici)T[3,5] = (r′itibi, r
′
itiτi)Hi[3,5]

and the key components ki,ipfe stay unchanged and we do not have problems for simulating
them:

ki,ipfe = (viyi/ti, 0)T[3,5] = (viyi/ti, 0)Hi[3,5] .

We are simulating ri := r′ibi and tiτi plays the role of the random factor to r′i. The basis
change affects hi,3 and h∗

i,5. We do not have JaK2 to compute h∗
i,5 but currently its coefficient

is 0 is all vectors thus there are no problems. However, since hi,3 appears only in a random
linear combination in eki and h∗

i,5 is in the hidden part of the basis, the change cannot
be recognized via the corrupted eki and the ciphertexts from Enc can still be simulated.
The correctness of decryption w.r.t the challenge ciphertext LoR is preserved. We have
|Adv(G1)− Adv(G0)| ≤ AdvDDH

G1
(1λ).
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Game G0 : H1(tag) → (JωtagK1 ,
q
ω′
tag

y
1
), H1(tag

′) → (Jχtag′K1 ,
q
χ′
tag′

y
1
), ζ1, ζ2, ζ3, ζ4, pi, qi, αi, γi, γ

′
i, θ

$← Zq

where piαi = ζ1, qiγi = ζ2, qiαi = ζ3, piγ
′
i = ζ4;

∑
i∈[n] θi = 0; Cskey is selectively declared

∀ i ∈ [n] : eki (piH
(1)

i − (ζ1si + ζ4ui)H
(4)

i , qiH
(2)

i − (ζ2si + ζ3ui)H
(4)

i , tihi,3 − vihi,4, hi,4, H
(6)

i )

∀ i ∈ [n] : ski (siαih
∗
i,1 + siγih

∗
i,2, uiγ

′
ih

∗
i,1 + uiαih

∗
i,2,

vi
ti
h∗
i,3 + h∗

i,4, θih
∗
i,6)

LoR
(ωtagpi ω′

tagqi riti −(ωtagζ1 + ω′
tagζ2) · si − (ω′

tagζ3 + ωtagζ4) · ui + x∗
b [i]− rivi 0 ωtag )Hi

Enc

(χtag′pi χ′
tag′qi r(k)

i ti −(χtag′ζ1 + χ′
tag′ζ2) · si − (χ′

tag′ζ3 + χtag′ζ4) · ui + xi − r(k)

i vi 0 χtag′ )Hi

DKeyGenShare
(siyiαi + uiyiγ

′
i siyiγi + uiyiαi

vi
ti
yi yi 0 dtag-f,yθi )H∗

i

Game G1 : H1(tag) → (JωtagK1 ,
q
ω′
tag

y
1
), H1(tag

′) → (Jχtag′K1 ,
q
χ′
tag′

y
1
), ζ1, ζ2, ζ3, ζ4, pi, qi, αi, γi, γ

′
i, θ

$← Zq

where piαi = ζ1, qiγi = ζ2, qiαi = ζ3, piγ
′
i = ζ4;

∑
i∈[n] θi = 0; Cskey is selectively declared; r′i, τi

$← Zq

LoR

(· · · riti −(ωtagζ1 + ω′
tagζ2) · si − (ω′

tagζ3 + ωtagζ4) · ui + x∗
b [i]− rivi r′iτi ωtag )Hi

Enc

(· · · r(k)

i ti −(χtag′ζ1 + χ′
tag′ζ2) · si − (χ′

tag′ζ3 + χtag′ζ4) · ui + xi − r(k)

i vi 0 χtag′ )Hi

DKeyGenShare
(· · · vi

ti
yi yi 0 dtag-f,yθi )H∗

i

Game G2 : H1(tag) → (JωtagK1 ,
q
ω′
tag

y
1
), H1(tag

′) → (Jχtag′K1 ,
q
χ′
tag′

y
1
), ζ1, ζ2, ζ3, ζ4, pi, qi, αi, γi, γ

′
i, θ

$← Zq

where piαi = ζ1, qiγi = ζ2, qiαi = ζ3, piγ
′
i = ζ4;

∑
i∈[n] θi = 0; Cskey is selectively declared; τi, ρ

$← Zq

LoR

(· · · riti −(ωtagζ1 + ω′
tagζ2) · si − (ω′

tagζ3 + ωtagζ4) · ui + x∗
b [i]− rivi − r′iρτi r′iτi ωtag )Hi

Enc

(· · · r(k)

i ti −(χtag′ζ1 + χ′
tag′ζ2) · si − (χ′

tag′ζ3 + χtag′ζ4) · ui + xi − r(k)

i vi 0 χtag′ )Hi

DKeyGenShare
(· · · vi

ti
yi yi ρyi dtag-f,yθi )H∗

i

Game G3 : H1(tag) → (JωtagK1 ,
q
ω′
tag

y
1
), H1(tag

′) → (Jχtag′K1 ,
q
χ′
tag′

y
1
), ζ1, ζ2, ζ3, ζ4, pi, qi, αi, γi, γ

′
i, θ

$← Zq

where piαi = ζ1, qiγi = ζ2, qiαi = ζ3, piγ
′
i = ζ4;

∑
i∈[n] θi = 0; Cskey is selectively declared; τi, ρ

$← Zq

LoR

(· · · riti −(ωtagζ1 + ω′
tagζ2) · si − (ω′

tagζ3 + ωtagζ4) · ui + x∗
b [i]− rivi − r′iρτi r′iρτi ωtag )Hi

Enc

(· · · r(k)

i ti −(χtag′ζ1 + χ′
tag′ζ2) · si − (χ′

tag′ζ3 + χtag′ζ4) · ui + xi − r(k)

i vi 0 χtag′ )Hi

DKeyGenShare
(· · · vi

ti
yi yi yi dtag-f,yθi )H∗

i

Fig. 3: Games G0, . . . ,G3 for Theorem 16. The set Cskey of corrupted secret keys ski is selectively
declared. The index ℓ runs in {1, . . . ,K} for the functional key queries and k runs in the number
of ciphertexts (including n components) queried to Enc. The function H1 is modeled as a random
oracle.

Game G2: In this game, we perform a formal basis change to introduce a random value in the
4-th coordinate of ci,ipfe and a multiple of yi in the 5-th coordinate of ki,ipfe for all keys. The
basis changes are performed at Setup for i ∈ Hskey statically known from the beginning.

The simulator samples ρ
$← Zq and uses the matrices:

Hi :=

[
1 0
ρ 1

]
4,5

H ′
i :=

(
H -1

i

)⊤
=

[
1 −ρ
0 1

]
4,5

Hi = Hi ·T; H∗
i = H ′

i ·T∗ .

The vectors from LoR for the corrupted i become:
ci,ipfe
= (−(ωtagζ1 + ω′

tagζ2) · si − (ω′
tagζ3 + ωtagζ4) · ui + x∗

b [i]− rivi, r
′
iτi)T[4,5]

= (−(ωtagζ1 + ω′
tagζ2) · si − (ω′

tagζ3 + ωtagζ4) · ui + x∗
b [i]− rivi − r′iρτi, r

′
iτi)Hi[4,5]
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Game G4 :H1(tag)→ (JωtagK1 ,
q
ω′
tag

y
1
), H1(tag

′)→ (Jχtag′K1 ,
q
χ′
tag′

y
1
), ζ1, ζ2, ζ3, ζ4, pi, qi, αi, γi, γ

′
i, θ

$← Zq where

piαi = ζ1, qiγi = ζ2, qiαi = ζ3, piγ
′
i = ζ4;

∑
i∈[n] θi = 0; Cskey is selectively declared; ρ̃i

$← Zq

LoR

( · · · riti −(ωtagζ1 + ω′
tagζ2) · si − (ω′

tagζ3 + ωtagζ4) · ui + x∗
b [i]− rivi − ρ̃iτi ρ̃iτi ωtag )Hi

Enc

( · · · r(k)

i ti −(χtag′ζ1 + χ′
tag′ζ2) · si − (χ′

tag′ζ3 + χtag′ζ4) · ui + xi − r(k)

i vi 0 χtag′ )Hi

DKeyGenShare
( · · · vi

ti
yi yi yi dtag-f,yθi )H∗

i

Game G5 :H1(tag) = JRF(tag)K1 := (JωtagK1 ,
q
ω′
tag

y
1
), H1(tag

′) = JRF(tag′)K1 := (Jχtag′K1 ,
q
χ′
tag′

y
1
) ,

JH2(tag-f,y)K2 = JRF2(tag-f,y)K1 := dtag-f,y

Game G6 : µ
$← Zq,H1(tag) := JRF(tag)K1 := (JωtagK1 ,

q
ω′
tag

y
1
), H1(tag

′) := JRF′(tag′) · (1, µ)K1 =
(Jχtag′K1 , Jµχtag′K1)

LoR
(· · · riti −(ωtagζ1 + ω′

tagζ2) · si − (ω′
tagζ3 + ωtagζ4) · ui + x∗

b [i]− rivi − ρ̃iτi ρ̃iτi ωtag )Hi

Enc

(· · · r(k)

i ti −(χtag′ζ1 + µχtag′ζ2) · si − (µχtag′ζ3 + χtag′ζ4) · ui + xi − r(k)

i vi 0 χtag′ )Hi

DKeyGenShare
(· · · vi

ti
yi yi yi dtag-f,yθi )H∗

i

Game G7 :dtag-f,y,i
$← Zq,

∑n
i=1 dtag-f,y,i = 0

LoR
(· · · riti −(ωtagζ1 + ω′

tagζ2) · si − (ω′
tagζ3 + ωtagζ4) · ui + x∗

b [i]− rivi − ρ̃iτi ρ̃iτi ωtag )Hi

Enc

(· · · r(k)

i ti −(χtag′ζ1 + µχtag′ζ2) · si − (µχtag′ζ3 + χtag′ζ4) · ui + xi − r(k)

i vi 0 χtag′ )Hi

DKeyGenShare

(· · · vi
ti
yi yi yi dtag-f,y,i )H∗

i

Game G8 :ζ1, ζ2, ζ3, ζ4, pi, qi, αi, γi, γ
′
i, θi, θ

′
i

$← Zq where piαi = ζ1, qiγi = ζ2, qiαi = ζ3, piγ
′
i = ζ4 and

∑n
i=1 θi =∑n

i=1 θ
′
i = 0; Define S′ = S +∆S,U ′ = U +∆U, where ∆S,∆U ∈ Zn

q s.t. for each i:{
(ωtagζ1 + ω′

tagζ2)∆S[i] + (ω′
tagζ3 + ωtagζ4)∆U [i] = −(x∗

b [i]− x∗
0[i])

∆S[i](αi + γi
ζ3
ζ1
µ) +∆U [i](γ′

i + αi
ζ3
ζ1
µ) = 0

.

∀ i ∈ [n] : ski (s
′
iαih

∗
i,1 + s′iγih

∗
i,2, u

′
iγ

′
ih

∗
i,1 + u′

iαih
∗
i,2, − vi

ti
h∗
i,3 + h∗

i,4, h
∗
i,6)

LoR

(ωtagpi ω′
tagqi riti −(ωtagζ1 +

′ ωtagζ2)s
′
i − (ω′

tagζ3 + ωtagζ4)u
′
i + x∗

0[i] − rivi − ρ̃iτi ρ̃iτi ωtag )Hi

Enc

(χtag′pi µχtag′qi r(k)

i ti −(χtag′ζ1 + µχtag′ζ2)s
′
i − (µχtag′ζ3 + χtag′ζ4)u

′
i + xi − r(k)

i vi 0 χtag′ )Hi

DKeyGenShare

((s′iαi + u′
iγ

′
i)yi (s

′
iγi + u′

iαi)yi
vi
ti
yi yi yi dtag-f,y,i )H∗

i

Fig. 4: Games G4, . . . ,G8 for Theorem 16. The set Cskey of corrupted secret keys ski is selectively
declared. The index ℓ runs in {1, . . . ,K} for the functional key queries and k runs in the
number of ciphertexts (including n components) queried to Enc. In G5 we use random functions
RF : Tag→ (Z∗

q)
2, RF2 : Tag × Zn

q → Zq. In G6 we use a random function RF′ : Tag→ Z∗
q .

and the key components ki,ipfe become

ki,ipfe = (yi, 0)T∗[4,5] = (yi, yiρ)H∗
i [4,5]

.

The basis change affects hi,5 and h∗
i,4. However, since h∗

i,4 appears only in a random linear
combination in ski, among which the corrupted we know in advance, and hi,5 is in the hidden
part of the basis, the change is perfectly indistinguishable. The correctness of decryption
w.r.t the challenge ciphertext LoR is preserved. We do not modify the ciphertexts from Enc,
because their 5-th coordinates are 0 from previous games, and the normal ciphertexts from
Enc retain the correctness. Moreover, because it is a formal basis change at Setup, all the
key components ki,ipfe will be affected, no matter they are computed by DKeyGenShare
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or by a corrupted ski and will have the desired modification. In the end it holds that
Adv(G2) = Adv(G1).

Game G3: We perform a formal basis change on the 5-th coordinate of (Hi,H
∗
i ) to “move” ρ.

The basis changes are performed at Setup, which is known due to the static corruption
constraint. The simulator uses the matrices:

Hi :=
[
ρ
]
5

H ′
i :=

(
H -1

i

)⊤
=

[
1
ρ

]
5

Hi = Hi ·T; H∗
i = H ′

i ·T∗ .

The change is performed on the hidden part, preserving the correctness and thus Adv(G3) =
Adv(G2). Similar to the transition from G1 to G2, regardless of whether ki,ipfe is written by
DKeyGenShare or by a corrupted ski, this formal basis change still has its affect and the
vectors are modified as required.

Game G4: We use the DDH assumption in G1 to change r′iρ from G3 into a totally random
value ρ̃i. We recall that all the changes thus far are assured for any query i to LoR. Hence,
given a DDH instance (Jr′iK1 , JρK1 , Jρ̃iK1), we can simulate these responses. If ρ̃i = r′iρ then
the responses follow G3, else they follow G4. We have |Adv(G4)−Adv(G3)| ≤ AdvDDH

G1
(1λ), by

using the random self-reducibility of DDH to obtain n DDH instances.
Game G5: In G5 we use a random function RF : Tag → (Z∗

q)
2 to simulate the RO of H1. The

distribution of RF(tag)→
q
(ωtag, ω

′
tag)

y
1
is identical to that from H1. Moreover, we also

simulate the RO of H2 by RF2 : Tag × Zn
q → Zq. The distribution of RF2(tag-f,y) stays the

same, except that the simulator aborts in Finalize if there is a collision among Q2 queries to

H2. The collision probability is bounded by
Q2

2
2q , where it is taken over the uniformly randomly

independent choices for each of the Q2 queries. In the end, we have |Adv(G5)−Adv(G4)| ≤
Q2

2
2q .

Game G6: In this game we replace the shifted secret shares of 0 in ki,ipfe , which are dtag-f,yθi,
while we simulate the RO of H2 by RF2 : Tag × Zn

q → Zq and (θi)
n
i=1 is a random secret

sharing of 0 generated from Setup. Our goal is to replace (dtag-f,yθi)
n
i=1 by (dtag-f,y,i)

n
i=1 that

are independent secret sharings of 0.
Our key observation is that: because we are in the static corruption model for skey, all
corrupted i are known since the beginning. More specifically, the secret shares (θi)

n
i=1 are

generated at setup and
∑

i∈Hskey
θi = −

(∑
i∈Cskey θi

)
is fixed since the beginning. Therefore,

upon receiving the tag tag-f and y the sum:

Ry := dtag-f,y
∑

i∈Hskey

θi

is fixed in advance. We use this observation and the random-self reducibility of DDH in G2

in a sequence of hybrids G5.k over k ∈ [K] ∪ {0}, where K is the number of key queries, for
changing the key component ki,ipfe undef tag-f.
In the hybrid G5.k with 0 ≤ k ≤ K + 1, the first k key queries ki,ipfe are having a random
secret shares over i ∈ H:

ki,ipfe = (· · · , vi
ti
yi, yi, yi, dtag-f,y,i )H∗

i

where dtag-f,y,i
$← Zq and

∑
i∈H dtag-f,y,i = Ry = dtag-f,y

∑
i∈Hskey

θi. We have G5.0 = G5 and
G5.K+1 = G6.
We describe the transition from G5.k−1 to G5.k for k ∈ [K + 1], using a DDH instance
(JaK2 , JbK2 , JcK2) where c−ab = 0 or a uniformly random value. Given a ppt adversary A that
can distinguish G5.k−1 from G5.k that differ at the k-th key query, we build a ppt adversary
B that breaks the DDH in G2:
– The adversary B uses JaK2 to simulate H2(tag-f,y). This implicitly sets dtag-f,y := a.
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– The adversary B samples θi
$← Zq for corrupted i ∈ Cskey, as well as other parameters to

output the corrupted keys ski to A. Then, B computes and defines Sk := −
∑

i∈Cskey θi.

– Let us denote H := |Hskey| the number of honest i, For i among the first H − 1 honest
clients whose keys are never leaked, B uses the random-self reducibility to compute
Jdtag-f,yθiK2 for responding to the k-th key query ki,ipfe.

– First of all, for i among the first |H| − 1 honest, B samples αk,i, βk,i
$← Zq and implicitly

defines bk,i := αk,ib+ βk,i, ck,i := αk,ic+ βk,ia. We note that{
Jbk,iK2 = αk,i JbK2 + Jβk,iK2
Jck,iK2 = αk,i JcK2 + βk,i JaK2

are efficiently computable from the DDH instance. Then, B uses Jck,iK2 in the simulation
of ki,ipfe.

– Next, for the last H-th honest client, B computes and defines:

Jck,HK2 := Sk · JaK2 −
∑

i∈Hskey\{H}

Jck,iK2 (8)

where Sk is known in clear from above and other honest Jck,iK2 can be computed as
explained. The adversary B then uses Jck,HK2 to simulation the H-th key component of
the k-th key query. We emphasize that we makes use of the static corruption of Cskey in
the simulation for honest i, since we never have to compute all the (ck,i)i∈H in the clear
and can embed the DDH instance so that on the exponents (of group elements) they sum
to Sk.

It can be verified that if c− ab = 0, then B is simulating the k-th query where B simulates
ki,ipfe[6] = dtag-f,yθi := abk,i and we are in G5.k−1; Else dk,i[6] = dtag-f,y,i := ck,i is a totally
uniformly random value such that

∑
i∈Hskey

ck,i+dtag-f,y
∑

i∈Cskey θi = aSk+dtag-f,y
∑

i∈Cskey θi =

0 thanks to (8), the fact that we program dtag-f,y := a for the RO of H2, and the definition of
Sk.

In the end we have |Pr[G5.k−1 = 1] − Pr[G5.k = 1]| ≤ AdvDDH
G2

(1λ) and thus |Pr[G5 =

1]− Pr[G6 = 1]| ≤ K · AdvDDH
G2

(1λ).

Game G7: We guess the challenge tag among the Q1 queries to the RO and simulate H(tag) by
a random pair of elements in G1, while for all tag′ ̸= tag that is queried, H(tag′) returns a
pair belonging to span((1, µ)) ⊆ G2

1. We use the random self-reducibility of DDH, where the
running time of the simulator increases by an additive factor O(Q1 · tG1) with tG1 being the
time for one addition in G1 and Q1 being the number of random oracle queries. We define
Event(tag) to denote the event where the challenged tag is guessed correctly, with probability
1/Q1. We have

|Pr[G7 = 1 | Event(tag)]− Pr[G6 = 1 | Event(tag)]| ≤ AdvDDH
G1

(1λ) .

Notice that Pr[G7 = 1 | ¬Event(tag)] = 0 and the output of G6 is independent of Event(tag).
Therefore, we have

Adv(G7) =
1

Q1
· Pr[G7 = 1 | Event(tag)]

+ Pr[¬Event(tag)] Pr[G7 = 1 | ¬Event(tag)]− 1

2

≥ 1

Q1
·
(
Adv(G6)− AdvDDH

G1
(1λ)

)
We thus have Adv(G6) ≤ AdvDDH

G1
(1λ) +Q1 · Adv(G7).
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Game G8: In this game we virtually change the secret values (si, ui) to (s′i, u
′
i) satisfying:

S′ := S +∆S

U ′ := U +∆U

where (∆S,∆U) satisfies:{
(ωtagζ1 + ω′

tagζ2)∆S[i] + (ω′
tagζ3 + ωtagζ4)∆U [i] = −(x∗

b [i]− x∗
0[i])

∆S[i](αi + γi
ζ3
ζ1
µ) +∆U [i](γ′i + αi

ζ3
ζ1
µ) = 0

(9)

This changes the challenge ciphertext into an encryption of x∗
0[i] that is independent of b.

The simulator works as follows:

1. During Setup, all secret information are generated for msk, including the vectors
(S,U, V, T ) and the dual bases (Hi, H

′
i)i∈[n].

2. For all queries Corrupt(i, skey), thanks to the admissibility condition 6, interpreted
particularly for F IP in (7), (s′i, u

′
i) = (si, ui) for i ∈ Cskey and we can simulate the

corrupted ski in the new form without problems.

3. Because Cskey is statically declared up front, the simulator can generate (θi)i∈Cskey so as
to respond to the corrupted ski.

4. For all queries to Enc, we have

− (χtag′ζ1 + µχtag′ζ2)s
′
i − (µχtag′ζ3 + χtag′ζ4)u

′
i

= −(χtag′ζ1 + µχtag′ζ2)si − (µχtag′ζ3 + χtag′ζ4)ui

by construction of (s′i, u
′
i) = (si, ui) + (∆S[i], ∆U [i]) following system (9).

5. If the adversary queries Corrupt(i, ekey) and i is not yet queried to LoR: return

eki =
(piH

(1)

i − (ζ1si + ζ4ui)H
(4)

i , qiH
(2)

i − (ζ2si + ζ3ui)H
(4)

i , tihi,3 − vihi,4,hi,4, H
(6)

i ).

The response to the query of i to LoR later will be:

ci,ipfe
= (ωtagpi, µωtagqi, riti,
−(ωtagζ1 + µωtagζ2)s

′
i − (µωtagζ3 + ωtagζ4)u

′
i + x∗

0[i]− rivi − ρ̃iτi, ρ̃iτi, ωtag)Bi .

6. If i is queried to LoR then Corrupt(i, ekey) happens afterwards, return:

ci,ipfe
= (ωtagpi, µωtagqi, riti,
−(ωtagζ1 + µωtagζ2)s

′
i − (µωtagζ3 + ωtagζ4)u

′
i + x∗

0[i]− rivi − ρ̃iτi, ρ̃iτi, ωtag)Bi

eki
= (piH

(1)

i − (ζ1s
′
i + ζ4u

′
i)H

(4)

i , qiH
(2)

i − (ζ2s
′
i + ζ3u

′
i)H

(4)

i , tihi,3 − vihi,4, hi,4, H (6)

i,6)

where s′i := si +∆S[i], u′i := ui +∆U [i] defined by (9).

7. For all i ∈ Hekey whose eki is never revealed, in the end the simulator sets

eki
= (piH

(1)

i − (ζ1s
′
i + ζ4u

′
i)H

(4)

i , qiH
(2)

i − (ζ2s
′
i + ζ3u

′
i)H

(4)

i , tihi,3 − vihi,4, hi,4, H (6)

i ).

The same goes for i ∈ Hskey.

8. For all functional key queries to DKeyGenShare, if i ∈ Hskey, the vector ki,ipfe is
responded using (si, ui):

ki,ipfe = ((siαi + uiγ
′
i)yi, (siγi + uiαi)yi,

vi
ti
yi, y

(ℓ)

i , yi, dtag-f,y,i)H∗
i

following the changes from G6.
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Our goal now is to argue that under the SXDH assumption, the above simulator can simulate
G8 in a computationally indistinguishable manner compared to G7. The main challenge is
to ensure that the correctness of decryption is retained, taking into account the fact that
the adversary can use eki to craft their own ci,ipfe as well as ski to craft their own k(ℓ)

i,ipfe,
while the corrupted clients Cskey are declared statically at the beginning of the game. From
the system (9), for i ∈ Cekey, if ∆x[i] = x∗

1[i] − x∗
0[i] ̸= 0, then it could be the case that

(s′i, u
′
i) ̸= (si, ui) and

k(ℓ)

i,ipfe = ((siαi + uiγ
′
i)y

(ℓ)

i , (siγi + uiαi)y
(ℓ)

i )H∗
i [1,2]

= ((s′iαi + u′iγ
′
i)y

(ℓ)

i − (∆S[i]αi +∆U [i]γ′i)y
(ℓ)

i ,

(s′iγi + u′iαi)y
(ℓ)

i − (∆S[i]γi +∆U [i]αi)y
(ℓ)

i )H∗
i [1,2]

does not have the correct form w.r.t (S′, U ′). Our idea is to do a computational basis change
to get rid of the errors introduced by (∆S[i], ∆U [i]) using the SXDH assumption. Noting
that for all i ∈ Cskey, ∆x[i] = x∗

1[i]− x∗
0[i] = 0 and we thus have to perform the basis changes

only for i ∈ Hekey = [n] \ Cskey at Setup time, given the statically declared Cskey. We first
describe how the basis are changed and then detail how the correctness is preserved. We
denote by (p1, . . . , pn) the values that are generated at Setup and satisfy (5).
For each i ∈ Hskey, given a DSDH instance (JaK2 , JbK2 , JcK2) where ρ := c− ab is either 0 or
1, the simulator performs a basis change using the matrices (Hi, H

′
i) defined as below:

Hi :=

1 0
µaωtag

pi

0 1 −a ζ1ωtag

ζ3pi
0 0 1


1,2,6

H ′
i :=

(
H -1

i

)⊤
=

 1 0 0
0 1 0

−µaωtag

pi
a
ζ1ωtag

ζ3pi
1


1,2,6

Hi = Hi ·T; H∗
i = H ′

i ·T∗ .

This will change (hi,1,hi,2) and h∗
i,6. However, as h

∗
i,6 is the hidden basis vector for i ∈ Hskey

and H (1)

i , H (2)

i appear in eki only as part of random linear combinations, the changes are not
recognized by the adversary. We do not have JaK1 to compute individual vectors hi,1,hi,2

but the simulation of the encryption oracles concerns solely the combination pihi,1 + qiµhi,2

and by noting that ζ1/ζ3 = pi/qi, we have pihi,1 + qiµhi,2 stays invariant under this basis
change. Therefore the simulation can still be performed.

The ciphertexts component from LoR can be written in T, because we do not have individual
vectors hi,1,hi,2, to see how they will be affected:

ci,ipfe =
(
piωtag, qiω

′
tag, ωtag

)
T[1,2,6]

=

(
piωtag, qiω

′
tag, ωtag − aµωtagωtag + a

ζ1ωtag

ζ3pi
qiω

′
tag

)
Hi[1,2,6]

=
(
piωtag, qiω

′
tag, ωtag + aωtag(ω

′
tag − µωtag)

)
Hi[1,2,6]

where pi, qi
$← Zq are chosen by the simulator at Setup satisfying (5). On the other hand,

for the ciphertexts component from Enc, we can write them in T and the same calculation
demonstrates that they retains their normal form required for the Enc thanks to the pro-
grammation of the RO.

We now consider the correction of the partial functional key component ki,ipfe, where i ∈ Hskey.
We emphasize again that we are using the fact Cskey is statically declared, all basis changes
(defined during Setup) are done for i ∈ Hskey, and this implies we know at the time of
answering DKeyGenShare which components are honest:
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ki,ipfe

= (s′iyiαi + u′iyiγ
′
i −∆S[i]yiαi −∆U [i]yiγ

′
i,

s′iyiγi + u′iyiαi −∆S[i]yiγi −∆U [i]yiαi,
dtag-f,y,i)H∗

i [1,2,6]

+ ζ3
ζ1
(∆S[i]γi +∆U [i]αi) · (−µcyi, ζ1

ζ3
cyi, 0, bpiyi/θi)T∗[1,2,6]

= (s′iyiαi + u′iyiγ
′
i −∆S[i]yiαi −∆U [i]yiγ

′
i,

s′iyiγi + u′iyiαi −∆S[i]yiγi −∆U [i]yiαi,
dtag-f,y,i)H∗

i [1,2,6]

+ ζ3
ζ1
(∆S[i]γi +∆U [i]αi) · (−µρyi, ζ1

ζ3
ρyi, 0, bpiyi/ωtag)H∗

i [1,2,6]

= (s′iyiαi + u′iyiγ
′
i −∆S[i]yiαi −∆U [i]yiγ

′
i −

ζ3
ζ1
(∆S[i]γi +∆U [i]αi) · µρyi,

s′iyiγi + u′iyiαi −∆S[i]yiγi −∆U [i]yiαi + (∆S[i]γi +∆U [i]αi) · ρyi,
dtag-f,y,i +

ζ3
ζ1
(∆S[i]γi +∆U [i]αi) · bpiyi/ωtag)H∗

i [1,2,6]

If ρ = 0 we are not correcting the vector, else if ρ = 1, the first two coordinates of k(ℓ)

i,ipfe are

(s′iy
(ℓ)

i αi + u′iy
(ℓ)

i γ′i, s
′
iy

(ℓ)

i γi + u′iy
(ℓ)

i αi) as desired. We recall that the 6-th coordinate of ki,ipfe

contains independent random secret sharings (together with the corrupted ski) thanks to G6.

It is important to note that we are able to simulate k(ℓ)

i,ipfe only for i ∈ [n] \ Cskey because

for i ∈ Cskey the adversary can use ski to craft their own k(ℓ)

i,ipfe. This is feasible for a correct
simulation thanks to the fact that Cskey is static and the constraint that ∆x[i] = 0 for all
i ∈ Cskey. Regarding the challenge component ci,ipfe, there will always be the additional term
aωtag(ω

′
tag − µωtag) because all computation is done in T then the change carries the vector

to Hi, no matter whether ci,ipfe comes from LoR or is computed by a corrupted eki. We are
implicitly using the fact that all key components ktag-f,y must be consistent w.r.t dtag-f,y so
as to regroup and obtain the 0-sum

∑n
i=1 dtag-f,y,i when decrypting.

We now verify that the decryption’s correctness is preserved:

(cttag,i × ki,ipfe)

=


(ωpi, ω′qi, riti,−(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi − rivi − ρ̃iτi,

ρ̃iτi, ωtag(1 + a(ω′
tag − µωtag)))Hi

×
(siyiαi + uiyiγ

′
i, siyiγi + uiyiαi,−vi

ti
yi, yi,

yi, dtag-f,y,i +
ζ3
ζ1
(∆S[i]γi +∆U [i]αi) · bpiy(ℓ)

i /ωtag)H∗
i


and thus there will exist an additional term (from the 6-th component)

q
(yi∆S[i]ζ2 + yi∆U [i]ζ3) · ab · (ω′

tag − µωtag)
y
t

(10)

while we are using the system (5) to get rid of the scalars (pi, qi, αi, γi). Due to the specification
of (∆S[i], ∆U [i]) from system (9), we can deduce that (∆S[i], ∆U [i]) is a multiple of ∆x =
x∗
b − x∗

0. Then, summing all cttag,i × ki,ipfe over i ∈ [n] will give ⟨∆S,y⟩ and ⟨∆U,y⟩, by
noting that for i ∈ Cskey we have ∆S[i] = ∆U [i] = 0 because ∆x[i] = 0. Therefore, at the
end of decryption, the noisy term of (10) will give us a multiple of ⟨∆x,y⟩, which evaluates
to 0 due to the adversary’s admissibility. This implies the correctness is preserved.
Last but not least, if i ∈ [n] \ Cskey but y(ℓ)

i = 0 and ∆x[i] ̸= 0 then we will have a trivial
DSDH. We note that, for instance, this case might happen for a corrupted i ∈ Cekey \ Cskey of
which ci,ipfe must be queried to LoR in the challenge query (and the adversary receives n
corresponding components). We recall that the corruption of i can be before or after the LoR
query. Nevertheless, this does not compromise the simulation and the indistinguishability,
for the key component of i is now:

ki,ipfe = (0, 0, 0, 0, dtag-f,y,i)H∗
i

and the corresponding challenge ciphertext component ci,ipfe from LoR is
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ci,ipfe =
(. . . , riti,−(ωtagζ1 +

′ ωtagζ2)s
′
i − (ω′

tagζ3 + ωtagζ4)u
′
i + x∗

0[i]− rivi − ρ̃iτi, ρ̃iτi, ωtag)Hi .
The correctness of decryption is not affected, while thanks to the perfect masking by ρ̃iτi that
is uniformly random and independent of (x∗

0[i],x
∗
1[i]), b is perfectly hidden by ci,ipfe. This

means that ci,ipfe is perfect indistinguishable from the previous game. We need at most n
instances of DSDH for the basis change and in the end |Adv(G8)−Adv(G7)| ≤ 2 ·AdvDDH

G2
(1λ).

In G7 the challenge bit b is perfectly hidden: all challenge ciphertext components returned
from LoR do not depend on b and if for i ∈ Cekey \ Cskey, where ∆x[i] ̸= 0 and yi = 0, the
resulting ci,ipfe perfectly hides b. Therefore Adv(G8) = 0 and in total

Advdmc-stat-ind-cpa
E,F ,A (1λ) ≤

7∑
i=0

|Adv(Gi+1)− Adv(Gi)|

≤ 3 · AdvDDH
G1

(1λ) + (2Q1 +K) · AdvDDH
G2

(1λ) +
Q2

2

2q

and the proof is completed. ⊓⊔

C.3 Security of Our DMCFE Construction in Section 6.1

Theorem 26. Let E = (Setup,DKShare,DKeyComb,Enc,Dec) be the DMCFE constructed in
Section 6.1. Then, E is one-time statically IND+-secure in the ROM following the security model
in Definition 18 if the SXDH and DBDH assumptions hold for G1 and G2. More specifically,
let n denote the dimension for inner-products, Q1, Q2 denote the maximum number of random
oracle (RO) queries to H1,H2 and K denote the total number of functional key queries. For
any one-time challenge ppt adversary A against E with static corruption of secret keys and
encryption keys, we have the following bound:

Advdmc-stat-1chal+
E,F IP,A (1λ) ≤ (K + 1)AdvDBDH

G1,G2
(1λ) + (3 + 2Q1 +K)AdvSXDH

G1,G2
(1λ) +

Q2
2

2q
.

Proof (Of Theorem 26). The advantage of an adversary A in a game Gi is denoted by

Adv(Gi) := |Pr[Gi = 1]− 1/2|

where the probability is taken over the random choices of A and coins of Gi.

Game G0: This is the security game Exprdmc-stat-1chal+
E(+),F IP,A (1λ). The adversary will declare the sets

Cskey, Cekey of corrupted secret keys ski and corrupted encryption keys eki at the beginning of
the game. We have Advdmc-stat-1chal+

E(+),F IP,A (1λ) = Adv(G0).

Game G1: We change how the responses from DKeyGenShare are generated. Let ℓ ∈
{1, . . . ,K} index the ℓ-th functional key, which is composed of (k(ℓ)

i,ipfe)i∈[n]. The goal of
this game is to keep all complete functional keys normal, while switching the incomplete
functional keys to simulated keys of random vectors.
More specifically, if the ℓ-th key query for (tag-f,y(ℓ)) is incomplete, then all components

(k(ℓ)

j,ipfe)j are generated by DKShare(ski, tag-f, r) for some uniformly random vector r
$← Zn

q .
We proceed by a sequence of hybrids G0.ℓ for ℓ ∈ [K], where in G0.ℓ all the ℓ′-th keys for
ℓ′ ≤ ℓ is satisfying the above simulation, and all the ℓ′-th keys for ℓ′ > ℓ are still correctly
generated as in G0. It holds that G0.K = G1.

From G0.ℓ−1 to G0.ℓ: We use the DBDH assumption to argue the difference in advantages
|Adv(G0.ℓ)− Adv(G0.ℓ−1)|. Given (J1K , JaK1 , JbK1 , JbK2 , JcK2 , JdKt) as a DBDH instance where
d−abc = 0 or a uniformly random value, we want to construct a simulator that simulates the
game G0.ℓ−1 for the adversary if d− abc = 0 and G0.ℓ if d− abc is a uniformly random value.
More specifically, our goal is to construct a simulator of the IND-security game using the
DBDH instance such that:
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1. If the ℓ-th key is complete, then it stays correctly answered no matter d− abc = 0 or a
uniformly random value.

2. If the ℓ-th key is incomplete, then it is a correct key for (tag-f,y(ℓ)) when d− abc = 0 and
a key of some random function when d− abc is a uniformly random value.

During Setup, all secret information is generated and the simulator also generates a secret
sharing (ϵ̃i)i of 0 over i ∈ Hskey. Concerning the values (ϵi)i, the simulator first samples

ϵi
$← Zq for i ∈ Cskey which is given statically. Because Cskey is statically declared, the

simulator is using basis changes for (Hi,H
∗
i ) with i ∈ Hskey w.r.t the matrices:

Hi :=

[
1 0

−ϵ̃ic/θi 1

]
6,8

H ′
i :=

(
H -1

i

)⊤
=

[
1 ϵ̃ic/θi
0 1

]
6,8

Hi = Hi ·T; H∗
i = H ′

i ·T∗ .

The RO for H2 is also programmed so that H2(tag-f,y
(ℓ))→ JbK2. Then, for allDKeyGenShare

query (i, tag-f,y(ℓ)[i]), the simulator replies with dktag-f,y,i := (ki,ipfe, ϵ·t8, Jϵi⟨E,1⟩κtag-f,y + ϵ̃idKt)
where

ki,ipfe

= (siyiαi + uiyiγ
′
i, siyiγi + uiyiαi,−vi

ti
yi, yi, 0, 0, 0,−eiκtag-f,y)H∗

i

+ (0, 0, 0, 0, 0, bθi, 0, 0)T∗

= (siyiαi + uiyiγ
′
i, siyiγi + uiyiαi,−vi

ti
yi, yi, 0, 0, 0,−eiκtag-f,y)H∗

i

+ (0, 0, 0, 0, 0, bθi, 0,−ϵ̃ibc)H∗
i

= (siyiαi + uiyiγ
′
i, siyiγi + uiyiαi,−vi

ti
yi, yi, 0, κtag-f,yθi, 0,−eiκtag-f,y − ϵ̃ibc)H∗

i

e(ϵi · J⟨E,1⟩K1 , Jκtag-f,yK2) = Jϵi⟨E,1⟩κtag-f,yKt.
The value a·t8 is computed using JaK1 and T (8). If the current index i∗ is the last index inHskey,
i.e. the ongoing ℓ-th key is complete, we simulate ϵi∗ := a−

∑
j ̸=i∗ ϵj and Jϵi∗⟨E,1⟩κtag-f,yKt

can be computed using JaK1 , JbK2.
We write it in the basis T, which is a random basis and indistinguishable from writing using
a vector of Hi. We will verify the two conditions 1 and 2:
• Suppose the ℓ-th key is complete, i.e. all i ∈ Hskey are queried. We first notice that:

JaK1 · T
(8) = (05, ϵ̃iac/θi, 0, a)Hi

by the basis change. Therefore, the decryption procedure computes

∑n
i=1


(siyiαi + uiyiγ

′
i, siyiγi + uiyiαi,−vi

ti
yi, yi,

0, κtag-f,yθi, δ,−eiκtag-f,y − ϵ̃ibc)H∗
i

×
(ωpi, ω′qi, riti,−(ωζ1 + ω′ζ2) · si − (ω′ζ3 + ωζ4) · ui + xi − rivi,

0, ω + ϵ̃iac/θi,−diω, a)Hi


+
∑n

i=1 Jϵi⟨E,1⟩κtag-f,y + ϵ̃idKt + Jδ⟨D,1⟩ωKt .

Thanks to the definition of the response to the last index i∗ ∈ Hskey that is queried to
DKeyGenShare, as well as the fact that (θi)i, (ϵ̃i)i are secret sharing of 0, we can verify
that the correctness of decryption persists.

• Suppose the ℓ-th key is incomplete, the same computation, with indices in a strict subset
Ĩ ⊂ Hskey will lead to

(d− abc) ·

∑
i∈Ĩ

ϵ̃i

 .

Moreover, we never reach the last index i∗ so as to simulate a key component that is
different from the correct result of DKeyGenShare. If d = ab · c we are simulating the
key components of the ℓ-th key forming correct components for (tag-f,y(ℓ)) and we are in
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G0.ℓ−1. Otherwise, d is a uniformly random value and the ℓ-th key is identically distributed
as a key for some random vector and we are in G0.ℓ. We also remark that in the latter case
where d

$← Zq, the term (d−abc) ·
(∑

i∈Ĩ ϵ̃i
)
acts as a one-time pad mask during decryption

and pefectly hide the challenge bit conditioned on using this incomplete ℓ-th key.
In the end, we have |Adv(G0.ℓ)−Adv(G0.ℓ−1)| ≤ AdvDBDH

G1,G2
(1λ) and thus |Adv(G1)−Adv(G0)| =

|Adv(G0.K)− Adv(G0)| ≤ K × AdvDBDH
G1,G2

(1λ).
Game G2: We change how the responses from LoR are generated. If the challenge queries are

incomplete, i.e. the set J of indices in LoR((x(0)

j , x(1)

j )j∈J⊆[n], tag
∗) does not contain Hekey,

using a similar reduction to DBDH as in the case of incomplete key queries, by accumulating
a secret sharing of 0 into the last index i∗ ∈ Hekey that will not be queried. This means
we have a one-time pad mask and the incomplete challenge ciphertext can be viewed as
encrypting a constant independent of b. Otherwise, the challenge ciphertext components are
responded normally. We recall that because Hekey is statically declared at the beginning of
the game. We again rely on the DBDH assumption to argue the difference in advantages.
The simulation is identical, except that we do not need multiple hybrids because we are in
the one-time IND-security game. In the end, we have |Adv(G2)− Adv(G1)| ≤ AdvDBDH

G1,G2
(1λ).

Game G3: We now apply the security of the underlying DMCFE scheme to modify the functional
keys that are complete and at the end switch the challenge ciphertext to encryption of x∗

0 if
it is complete. All the basis changes are performed as in Theorem 16, where we only pay
attention to complete functional keys during simulation. Following the above games, if the
challenge queries are incomplete, the responses are perfectly masked and independent of b. If
they are complete, we are able to switch them to encryptions of x∗

0 with negligible differences
in advantages. Due to Theorem 16, it holds that

|Adv(G3)− Adv(G2)| ≤ (3 + 2Q1 +K) · AdvSXDH
G1,G2

(1λ) +
Q2

2

2q
.

In G3, the challenge ciphertexts fully hides b, either they are complete or not. Therefore
Adv(G3) = 0 and the proof is completed. ⊓⊔
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